自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

若北辰

问道归何处,心安若北辰

  • 博客(1008)
  • 资源 (1)
  • 收藏
  • 关注

原创 【Python机器学习】Gradio:让机器学习模型触手可及的交互式界面工具

Gradio凭借其低代码、高扩展性的特点,已成为MLOps生态中的重要工具。对于希望快速验证模型效果、构建原型系统的开发者,它是不可或缺的利器。延伸学习gradio.app• 进阶教程:《用Blocks API构建股票预测仪表盘》通过以上内容,开发者可快速掌握Gradio的核心功能,并将其应用于实际项目。无论是学术研究还是工业落地,这个工具都将显著提升模型的可访问性与用户体验。

2025-04-08 08:05:30 28

原创 【Pytorch实战教程】with torch.no_grad():

是优化推理效率的关键工具,适用于无需梯度计算的场景。实际应用中常与联合使用,以兼顾模块行为与性能优化。

2025-03-28 16:48:04 66

原创 【Pytorch实战教程】深入浅出的学习Dataset

在PyTorch中,**Dataset**是用于表示数据集的核心抽象类,通过继承并实现其方法,可以灵活地加载和管理各种类型的数据。

2025-03-28 11:26:45 62

原创 【人工智能】科普:模态间的语义对齐

比如AI看图写话时,如果图片是狗却生成“这是一只鸟”,就是语义没对齐。对齐后AI才能准确理解跨模态信息(像人类一样看到猫说猫,听到笑话会笑)。你正在看一部外语电影,画面里一个人在哭(视觉模态),但字幕却写着“他好开心啊”(文本模态)。这时候你会觉得特别别扭,因为画面和文字。说到跨模态,一定避不开一个词,模态间的语义对齐,那到底什么意思呢?就是让不同模态的信息表达。

2025-03-27 12:33:27 160

原创 【人工智能】自注意力机制(Self-Attention)和传统注意力机制(Attention Mechanism)的核心区别

例如在机器翻译中,查询(Query)是目标语言(如英文)的单词特征,键(Key)和值(Value)是源语言(如中文)的单词特征。例如在处理一句话时,每个单词(Query)会同时计算与其他单词(Key)的相关性,并结合自身信息(Value)生成新的表示。通过这种设计,自注意力机制在保持计算效率的同时,显著提升了模型对复杂序列关系的建模能力,成为Transformer等现代架构的核心组件。其中,Q (Query)、 K (Key)、 V (Value)分别来自不同序列。所有 Q 、K 、 V 均来自。

2025-03-27 11:59:26 32

原创 【Pytorch实战教程】拆解PyTorch中的多头注意力:原来Transformer的核心组件可以这样玩

维度地狱:新版PyTorch的参数能救命,但混合使用时仍要小心——当遇到时,请先做三个深呼吸再检查维度顺序。注意力分数计算:默认使用缩放点积注意力,记得除以√d_k(不过PyTorch已经帮你做好了)梯度消失:当num_heads太大时可能出现,可以尝试结合LayerNorm使用显存杀手:序列长度平方级的显存消耗,处理长文本时可以考虑内存高效的实现方式多头注意力就像给模型装上了复眼,让它能够从多个角度观察数据之间的关系。理解。

2025-03-15 15:26:23 160

原创 【人工智能】缩放点积注意力和多头注意力

通过计算Query和Key的点积,得到注意力权重,然后对Value进行加权求和,得到输出。:并行地执行多个Scaled Dot-Product Attention,然后将结果拼接并线性变换,得到最终的输出。

2025-03-13 12:45:13 568

原创 【人工智能】Transformer、BERT、GPT:区别与联系

Transformer、BERT、GPT 是 NLP 发展史上的重要里程碑。它们之间相互借鉴、相互促进,共同推动了 NLP 技术的进步。未来,随着技术的不断发展,我们可以期待更多更强大的模型出现,为人类语言理解和生成带来更多可能性。

2025-03-13 10:10:07 274

原创 【PyTorch实战教程】用Grad-CAM揭开神经网络的黑箱

Grad-CAM为深度学习模型提供了直观的可视化解释工具,在PyTorch中的实现也相对简单。随着可解释性需求的增长,理解并合理使用这些工具将成为AI工程师的必备技能。建议读者在自己的项目中尝试应用Grad-CAM,可能会发现模型决策中意想不到的规律!代码说明需要准备测试图像(示例中的test_cat.jpg)实际使用时应根据具体模型调整target_layer可视化部分可根据需要调整叠加参数完整实现需要处理GPU设备迁移问题。

2025-03-04 11:33:57 106

原创 【Python实战练习】random 库中常用的函数

random库提供了丰富的随机数生成功能,适用于各种场景,如模拟、游戏、抽样等。通过合理使用这些函数,可以轻松实现随机化需求。

2025-02-21 15:41:53 65

原创 【Pytorch实战教程】深入了解 PyTorch 中的 SummaryWriter

是 PyTorch 提供的一个非常强大的工具,它能够帮助你实时记录并可视化训练过程中的各种数据。通过 TensorBoard,你可以轻松地查看损失值、准确率、模型参数、图像、计算图等信息,从而帮助你更好地理解和调试模型。希望本文能够帮助你更好地掌握的用法!这篇文章介绍了的基本用法和常见的功能,如果你有更多问题或想要深入了解某个部分,可以随时问我!

2025-02-11 14:04:30 310

原创 【Pytorch实战教程】PyTorch图像预处理全攻略:手把手拆解torchvision.transforms

transform=train_transform # 自动应用预处理关键要点回顾预处理流程需要同时考虑数据规范化和多样性Compose如同流水线,顺序影响最终效果(推荐顺序:几何变换→色彩变换→Tensor转换→归一化)始终通过可视化验证预处理效果希望这篇详解能让您真正掌握transforms的精髓!如有更多问题,欢迎在评论区展开讨论~

2025-02-09 10:00:00 109

原创 【Python实战练习】Python类中的方法:形式与作用详解

在Python中,类是面向对象编程(OOP)的核心概念之一。类不仅包含数据(属性),还包含操作这些数据的行为(方法)。方法是定义在类中的函数,它们决定了对象的行为。Python中的方法有多种形式,每种形式都有其特定的用途。本文将详细介绍Python类中的各种方法形式及其作用。

2025-02-09 00:02:33 171

原创 【Pytorch实战教程】PyTorch中的Dataset用法详解

Dataset是PyTorch中用于表示数据集的抽象类。它允许你自定义数据加载的方式,并且可以与DataLoader结合使用,方便地进行批量加载和数据增强等操作。简单来说,Dataset类定义了一个数据集的结构,包括如何获取数据、如何获取数据的标签以及数据集的大小等信息。通过继承Dataset类,你可以轻松地创建自己的数据集。Dataset类是PyTorch中处理数据的重要工具,它允许你自定义数据加载的方式,并且可以与DataLoader结合使用,方便地进行批量加载和数据增强等操作。通过继承。

2025-02-08 23:57:17 290

原创 【Pytorch实战教程】让数据飞轮转起来:PyTorch Dataset与Dataloader深度指南

在深度学习项目中,`数据准备`往往`占据70%以上的工作量`。PyTorch提供的Dataset与Dataloader犹如智能流水线工人,让数据管理变得优雅高效。本文将带您深入理解这对`黄金搭档`,并通过丰富案例掌握它们的实战技巧。

2025-02-08 23:43:22 656

原创 【Pytorch实战教程】Python探索利器:dir与help深度解析(PyTorch实战演示)

在Python的广袤宇宙中,每个开发者都是星际探险家。当我们面对陌生的模块、未知的类库时,你是否渴望拥有随时可调用的"探测器"?今天要介绍的dir()和help()正是Python原生的终极探索工具,尤其在面对PyTorch这样庞大的深度学习框架时,它们将成为你在代码宇宙中导航的星图。通过dir()和help()快速定位类/模块的功能入口无需切换窗口即时查看文档发现隐藏的实用方法理解复杂类继承关系在PyTorch开发中,这两个函数尤其重要。当你在调试出现时,可以立即用dir()验证对象结构;

2025-02-08 18:31:06 85

原创 【数据科学】DeepSeek-R1和ChatGPT-o1到底谁强谁弱?没有对比就没有伤害!

执行建议:每完成一个阶段用「10分钟录音」复盘,重点关注「过程中哪些瞬间嘴角不自觉上扬」,这些微表情往往比理性分析更接近真实兴趣。记住,真正的兴趣会在你停止「寻找兴趣」这个动作后,依然持续拉扯你的注意力。快速罗列100件「如果不怕失败/不缺钱/时间足够最想尝试的事」,用红笔圈出重复出现的关键词(如创作/社交/冒险)准备白纸,按年龄轴写下人生中30件「主动投入且获得成就感」的事件(不限于成功,如:独立组装模型/策划班级活动)好的,我将提供一套可落地的兴趣探索框架,包含4个核心阶段和12个具体工具。

2025-02-07 17:19:38 1095

原创 【论文写作】深度学习&无线通信领域的一些国际著名期刊

IEEE Transactions on Neural Networks and Learning SystemsIEEE Transactions on Signal ProcessingIEEE Transactions on CommunicationsIEEE Journal on Selected Areas in CommunicationsIEEE Transactions on Wireless CommunicationsIEEE Transactions on Cognitive Com

2025-02-07 17:18:33 437

原创 【论文写作】参考文献中的卷、期、页的含义

在学术论文中,页、卷、期是用于标识和定位文献出版信息的重要概念,通常出现在期刊论文的引用信息中。以下是它们的详细解释:这些信息在引用文献时非常重要,能够帮助读者快速定位到原文。

2025-02-07 11:46:33 2248

原创 【数据科学】一个强大的金融数据接口库:AKShare

AKShare 是一个金融数据获取工具,涵盖了股票、期货、外汇、基金、债券等各类金融数据。与其他金融数据获取工具相比,AKShare 的最大优势在于它提供了丰富的数据接口,并且支持本地化数据存储,能够方便地处理国内和国外的金融数据。获取股票、期货、外汇、数字货币等市场数据提供各种指标数据,如股指期货、A股市场的技术分析指标支持股票数据的历史查询、实时行情、财务数据、经济数据等支持数据存储与本地化管理。

2025-02-06 16:31:39 2149

原创 用Python获取股票数据并实现未来收盘价的预测

获取数据先用下面这段代码获取上证指数的历史数据,得到的csv文件数据,为后面训练模型用的运行完上述代码之后,会得到如下一个csv文件:训练模型11000.6f1.2f。

2025-02-06 16:10:22 3691 4

原创 【Python基础】用Python玩转金融数据:akShare模块全面指南

在量化交易和金融数据分析领域,高效获取准确的市场数据是成功的关键。本文将深入介绍一个强大的开源工具——akShare,这个基于Python的财经数据接口库正在成为国内开发者获取金融数据的首选利器。

2025-02-05 16:36:49 638

原创 【Pytorch实用教程】TCN(Temporal Convolutional Network,时序卷积网络)简介

TCN是处理时序数据的一个非常强大的工具,相较于传统的RNN和LSTM,TCN通过卷积方式高效地捕捉长时间依赖,具有较强的并行化能力和较低的计算复杂度。它在许多需要序列建模的任务中表现出色,尤其适用于那些对时间依赖关系要求较高的应用场景。

2025-01-17 08:02:34 701

原创 【深度学习】用RML2018训练好模型去识别RML2016的数据会遇到输入维度不匹配的问题,如何解决?

除了信号长度,RML2016和RML2018的数据集在其他方面可能也存在差异,如信噪比(SNR)、调制类型、样本数量等。这些差异也可能影响模型的性能。因此,在应用模型之前,建议详细分析两个数据集的特性,并根据需要进行相应的调整。由于RML2018和RML2016数据集的信号样本长度分别为1024和128,直接使用在RML2018上训练的调制识别模型来识别RML2016的数据可能会遇到输入维度不匹配的问题。如果您有更多具体的问题或需要进一步的技术支持,请随时告知!预训练的模型进行微调。仅调整输入层和输出层。

2025-01-16 17:57:40 241

原创 【通信原理】为什么信号需要调制?

不调制信号直接发送会导致天线尺寸过大,尤其是低频信号的天线长度可达数千公里,完全不现实。调制通过将低频信号加载到高频载波上,显著减小了天线尺寸,使信号传输变得可行。就像快递员把物品装进箱子以便运输,调制是将信息(如声音、图像)加载到载波信号上,以便通过无线或有线方式传输。今天一个小朋友问我,信号为什么需要调制,直接发送不行吗,我想对于初学者来说,这个问题应该很多人都疑问过,这里简单解释一下。这是因为天线的长度与信号的波长成正比,而低频信号(如音频信号)的波长非常长,导致所需的天线尺寸不切实际。

2025-01-14 19:44:30 138

原创 【Pytorch实用教程】PyTorch 中如何输出模型参数:全面指南

在 PyTorch 中,输出模型参数是一个简单但非常重要的操作。通过和等方法,我们可以轻松地访问和输出模型的参数。无论是调试模型、分析模型行为,还是保存和加载模型,这些方法都能帮助我们更好地理解和使用深度学习模型。希望本文对你有所帮助!如果你有任何问题或建议,欢迎在评论区留言。

2025-01-09 17:14:24 493

原创 【人工智能-概念篇】迁移学习、多任务学习与多模态学习:深度解析与应用探讨

迁移学习是一种通过将已学习的知识从一个任务迁移到另一个相关任务上,来提高学习效率和性能的方法。简单来说,就是让模型在已解决的问题上“借力”,来更快更好地解决新问题。

2025-01-06 17:19:31 312

原创 【深度学习-降维篇】t-SNE:让高维数据“看得见”的降维利器

t-SNE 是由和在 2008 年提出的一种用于可视化高维数据的算法。它最主要的目的,是将高维空间中的数据点投影到 2D 或 3D 空间中,并在低维空间中尽可能地保留原数据的局部结构,让我们能够用肉眼识别数据中的模式、聚类或分布情况。在高维空间中,数据往往是稀疏的、分布非常复杂,且不同样本之间的局部结构不易从外部洞察。t-SNE 通过一种基于概率分布相似度的方式,力图将相似的样本在低维空间里拉得更近、不相似的样本推得更远,从而得到一个更直观、更便于人类理解的可视化分布。

2025-01-02 10:21:46 347

原创 【Pytorch实用教程】深入了解 torchvision.models.resnet18 新旧版本的区别

近期,torchvision 对其模型加载 API 进行了更新,将旧版的。随着深度学习模型的不断发展,torchvision 的模型库中预训练权重的种类逐渐增多。通过这次更新,我们可以更高效地管理预训练权重,从而进一步优化深度学习项目的开发流程。本文将介绍这一变化的背景、具体区别,以及如何在代码中适配新版本的。参数提供了更好的扩展能力,可以轻松支持新版本权重或自定义权重。参数允许加载多个版本的权重,这对特定任务的模型微调非常有用。参数的更新,是为了提升模型加载的灵活性和可维护性。参数替换为更具描述性的。

2025-01-01 09:44:08 452

原创 【Pytorch实用教程】循环神经网络中使用dropout需要注意的问题

PyTorch 的 dropout 参数对单层 RNN 没有作用。如果您需要在单层 RNN 中引入随机性,可以在输入或输出层手动添加 dropout。

2025-01-01 09:28:37 601

原创 【Pytorch实用教程】PyTorch 自带的数据集全面解读

这篇博客文章将带你快速了解 PyTorch 自带(或官方维护)的各类常用数据集,并介绍它们的使用方法,包括图像、文本和音频数据集。希望能帮助你在项目中快速上手并提高效率。

2024-12-25 08:49:29 350

原创 【人工智能-初级】回归分析案例

【人工智能-初级】回归分析案例。

2024-12-24 17:14:38 83

原创 【人工智能-初级】基于用户的协同过滤推荐算法

使用的是电影推荐数据集 MovieLens,实验中我们会通过用户评分数据计算用户之间的相似性,并使用基于用户的协同过滤算法来生成推荐。基于用户的协同过滤算法是一种常见的推荐算法,它的核心思想是根据用户之间的相似性来进行推荐。,该数据集包含10万条电影评分数据。每条数据包含用户、电影、评分和时间戳。这些推荐电影是基于与用户1相似的其他用户的评分进行加权推荐的。基于余弦相似度计算用户之间的相似度。函数计算余弦相似度,并存储每对用户之间的相似度。来计算用户之间的相似度,

2024-12-24 17:14:00 91

原创 【Python-中级】Python中的线程池:ThreadPoolExecutor

提供了一种简洁高效的方式来实现多线程任务管理,适合初学者和专业开发者使用。如果你需要在项目中实现并发功能,不妨试试这个强大的工具。是一个简单且高效的线程池工具。它提供了高层次的接口,用于并发地运行任务,同时隐藏了许多复杂的底层细节,非常适合日常的多线程任务。模块中的一个类,它提供了一个线程池来管理线程,并允许我们通过简单的接口提交和获取任务结果。在Python中,实现多线程编程的方法有很多,而。

2024-12-24 17:12:23 93

原创 【深度学习-调参】Batch 大小与类别数到底有没有潜在的关系?

批次大小(batch_size)并不是一个仅关乎训练效率和显存资源的数字,而更应被视作一个影响训练稳定性与模型性能的重要超参数。对于一个多分类任务,如果我们在每一个批次中无法合理地保持各类别的样本比例或最少样本数量,就可能引发模型在训练过程中出现梯度不稳定、收敛缓慢和偏差累积等问题。在实际项目中,建议根据数据集规模、类别数量、类别不平衡情况等因素来合理地选择 batch_size,并采用适当的分层抽样或固定配额采样等策略。

2024-12-24 09:28:30 327

原创 【深度学习-算法】这应该是全网对LSTM算法讲的最清楚的一个了(从形状变换和运算流程的角度来看)

输入形状6410242(64,\;1024,\;2)6410242;表示有 64 个样本、每个样本的序列长度 1,024、每个时刻 2 个特征。LSTM 每个时刻运算输入xtx_txt​与上一时刻ht−1ct−1ht−1​ct−1​共同参与 4 个门(输入门、遗忘门、输出门、候选细胞状态)的计算。产生当下时刻ctct​(细胞状态)和htht​(隐藏状态),均是64128(64,\;128)64128。整条序列输出。

2024-12-23 23:50:44 179

原创 【人工智能-数据集】RML2018 时域信号的时序信号和星座图的图片信号生成方式(可用于多模态特征融合)

RML2018(RadioML 2018)数据集是一个广泛用于无线通信信号识别的开源数据集。它包含了多种调制方式(如OOK、QPSK、16QAM等)在不同信噪比下的信号样本。这些数据以 HDF5 格式存储,适用于大规模的数据处理和分析。数据集特点:多调制方式:涵盖24种不同的调制方式。多信噪比:包括从-20 dB到30 dB的26种信噪比。大规模样本:每种调制方式和信噪比下包含4096个样本。数据切分:将原始的 HDF5 数据集按照调制方式和信噪比切分成单个文件,便于后续处理。样本选择。

2024-12-23 14:57:13 446

原创 【深度学习-环境篇】安装pytorch的全流程,跟着做就没问题

我们先配置一下镜像源,因为直接安装的话,因为pytorch的服务器在国外,我们直接安装的话,时间会非常长,这里我们就先配置一下国内的镜像源,这样就可以安装的比较快了。接下来,我们就需要看一下自己cuda driver 版本,要满足你选定的cuda runtime 版本小于等于cuda driver 版本。软件要小于硬件的版本才行,否则的话,如果软件的版本高,它想要使用某个硬件,但是硬件因为版本低,不支持,这不就出错了吗,回车就可以看到自己的驱动版本,我的cuda driver版本是:12.7。

2024-12-21 11:28:46 362

原创 【Python基础-环境篇】Anaconda简介、主要特点、虚拟环境

Anaconda 是一个开源的 Python 和 R 编程语言的科学计算平台,广泛用于数据科学、机器学习和人工智能的开发。它为用户提供了一个完整的工具链,包括包管理、环境管理和开发工具,旨在简化数据科学项目的管理和部署。Anaconda 最大的特点是它集成了大量的数据分析和科学计算库,使得用户可以轻松地安装、管理和使用这些工具,而无需单独下载和配置。无论是新手还是专业人士,都能从中受益。:创建一个新的虚拟环境。:激活指定的虚拟环境。:退出当前虚拟环境。:安装包到当前环境。conda list。

2024-12-21 09:23:26 94

原创 【深度学习-论文】通俗易懂的理解多标签识别

多标签分类的核心思想是将一条信号同时标记多个标签,从而解决不同类型雷达发射机信号的并行识别问题。通俗来说,就是将复杂信号看作一个"组合",每个组合可以包含多个信号类型标签,例如同时包含SinFM和BPSK两种类型。

2024-12-17 14:56:32 191

QPSK是一种常用的数字调制技术,它将数据信号调制到一个载波波形上,通过改变载波的相位来表示数据 这种调制技术因其相对高效的频谱

### QPSK信号的产生 在MATLAB中生成QPSK信号主要涉及以下几个步骤: 1. **二进制数据生成**:首先,我们需要生成或提供一串二进制数据,这将是我们要传输的信息。 2. **符号映射**:在QPSK调制中,每两位二进制数据会映射为一个符号,这意味着每个符号可以代表4种可能的状态之一(00、01、10、11)。这一步涉及将二进制数据分成两位一组,并将每组映射到一个特定的相位上。例如,00、01、10和11可能分别映射到相位0°、90°、180°和270°。 3. **调制**:在这个阶段,映射后的符号会调制到载波上。具体来说,每个符号会根据其对应的相位改变载波的相位,从而生成QPSK信号。这可以通过在MATLAB中使用相应的数学公式和函数来实现。 4. 波形生成:最后,根据上述调制过程,我们可以生成并可视化QPSK信号的波形,以便于观察和分析。

2024-04-08

基于改进Apriori算法的地铁故障关联规则挖掘

地铁作为城市公共客运的重要载体, 其系统设备在运营过程中难免发生一些故障 。 因此, 应用数据挖掘技术 对已有地铁故障数据进行关联规则挖掘, 分析其影响, 对故障预警与风险危害评估具有重大意义 。 针对地铁故障数 据种类多样 、 影响程度难以界定等问题, 建立考虑故障关联的改进 Apriori 算法, 与经典的 FP-Growth 算法进行对比, 对地铁故障关联规则进行研究, 优化该算法的基本思想和流程 。 选取某地铁 2020 年设备故障数据为例, 对其进行详 细地分析, 基于 Python 语言实现建模仿真, 输出得到车载 ATP 故障 、 信号设备故障等多类故障之间的关联规则结果, 为地铁故障影响程度分析 、 故障诊断 、 故障预警 、 风险危害等级划分等提供重要的参考依据 。

2024-01-18

基于支持向量机的通信干扰效果在线评估算法

针对当前干扰效果第三方评估与实际干扰效果脱节问题, 提出了一种基于支持向量机的 干扰效果在线评估算法。 首先, 以通信电台为作战对象分析了其抗干扰行为参数; 其次, 提出 了以通信信号体制、 功率、 编码方式行为参数变化作为干扰效果在线评估依据的方法, 构造了 行为学习样本库; 最后, 通过仿真实验验证了算法的有效性, 利用 Link - 16 的仿真平台进行了 实验, 验证了样本库的可靠性。

2024-01-18

Python数据科学速查表

Python数据科学速查表 - Bokeh Python数据科学速查表 - Jupyter Notebook Python数据科学速查表 - Keras Python数据科学速查表 - Matplotlib 绘图 Python数据科学速查表 - Numpy 基础 Python数据科学速查表 - Pandas 基础 Python数据科学速查表 - Pandas 进阶 Python数据科学速查表 - Python 基础 Python数据科学速查表 - Scikit-Learn Python数据科学速查表 - SciPy Python数据科学速查表 - Seaborn Python数据科学速查表 - Spark RDD 基础 Python数据科学速查表 - Spark SQL 基础 Python数据科学速查表 - 导入数据

2024-01-16

短波通信协议智能识别技术研究

现代化作战中,信息对抗很大程度上决定了战争的走向。战场通信主要依靠短 波通信方式实现, 短波通信协议识别是信息对抗和民用应急快速组网的技术基础。 随着短波通信协议的不断更新, 短波通信涌现出了更复杂的形式,对协议识别提出 了更高的要求。 因此,引入智能化的短波通信协议识别有着潜在的应用价值。本文 重点研究了数据链路层的短波通信协议识别方法。 深入研究目前常用的短波通信协议数据帧格式,首先建立了基于数据链路层 的短波通信协议识别框架和工作流程。其中包含预处理模块、分类识别模块和输出 模块。 在实验室条件下,获取真实短波信号困难。因此,本文通过软件建立了短波 通信信号生成模块。 按照模块化的思想完成了五种常用的短波通信协议的物理层 和数据链路层实现,并在短波信道内添加了可配置的多径干扰、突变和噪声干扰以 模拟真实的信道环境。通过信号生成模块生成了训练信号和测试信号的数据集。 在预处理模块,直接对数据流进行帧切分会造成部分数据帧空集现象,本文以 帧同步码为标志将数据流切分成帧。提出了一种适用于比特流数据的 N-Eclat算法, 实现对帧同步码进行识别。用信号生成模块产生的数据进行测试。

2024-01-16

基于深度学习的通信信号种类识别研究

通信信号种类识别技术是基于信号处理和模式识别理论的技术,旨在通过对接收到的信号进行分析和判断,确定信号的特征和种类。该技术被广泛应用于电子对抗、无线电侦察、认知无线电、网络安全等领域。随着现代通信技术的不断发展,各种新通信设备和协议不断涌现,使得通信信号种类迅猛增加。同时,由于个别信号协议之间具有很高的相似度,造成信号种类难以准确区分。这些问题对传统的通信信号种类识别方法带来了巨大的挑战。因此,为适应现代通信系统高速化、智能化、实时化的通信需求,开展针对通信信号种类识别的研究在军事和民用领域都具有非常重要的意义。本文以深度神经网络为基础,针对通信信号种类识别技术涉及的自动调制识别、信道编码识别、以及特定协议信号识别等技术领域开展深度研究

2024-01-16

融合SENet和Trans...mer的应用层协议识别方法.caj

协议识别技术在网络通信和信息安全领域具有至关重要的地位和作用。针对现有基于时空特征的协议识别方法提取协议特征不充分、不全面的问题,提出了一种基于SENet和Transformer的应用层协议识别方法。协议识别技术很重要。方法关注协议数据的时空特征,由加入SENet注意力的残差网络构成的空间特征提取模块和Transformer网络编码器构成的时间提取模块组成。空间特征提取阶段,在残差网络结构中加入SE块获取多个卷积通道间的联系,自适应地为通道分配权重,提取不同通道中更加活跃的协议空间特征;时间特征提取阶段,由基于多头注意力机制的Transformer编码器通过堆叠的方式构建时间特征提取模块,利用输入数据的位置信息全面地获取协议数据的时间特征。通过对更加充足的空间特征和更加全面的时间特征的提取和学习,可以获得更有效的协议识别信息,进而提高协议识别性能。ISCX2012和CSE_CIC_IDS_2018混合数据集上的实验结果表明,所提模型的总体识别准确率达到了99.20%,F1值达到98.99%,高于对比模型。

2024-01-15

python调制识别数据及代码

数据集包含了从-20dB 到+18dB 总共 20 个信噪比(步长为 2)下的 11 种调制信号, 包括 AM-DSB、 AM-SSB 和 WBFM 三种模拟调制信号,以及 BPSK、 QPSK、 8PSK、 CPFSK、 GFSK、 PAM4、 QAM16 和 QAM64 八种数字调制信号。其中信号的中心频率为 200KHz,采样频率为 1Msamp/s,且每个信噪比下每种调制信号包含 1000 个信号。其中每个信号包含 IQ 两路数据,且每一路数据都包含有 128 个采样点。

2024-01-02

随机 Transformer;变分自编码器;多维时间序列;异常检测

针对已有基于变分自编码器( VAE)的多维时间序列( MTS)异常检测模型无法在隐空间中传播随机变量间的长时依赖性问题,提出了一种融合 Transformer 编码器和 VAE 的随机 Transformer MTS 异常检测模型( ST-MTS-AD)。在 ST-MTS-AD 的推断网络中, Transformer 编码器产生的当前时刻 MTS 长时依赖特征和上一时刻随机变量的采样值被输入多层感知器,由此生成当前时刻随机变量的近似后验分布,实现随机变量间的时序依 赖。采用门控转换函数( GTF)生成随机变量的先验分布, ST-MTS-AD 的生成网络由多层感知器重构 MTS 各时刻取值分布,该多层感知器的输入为推断网络生成的 MTS 的长时依赖特征和随机变量近似后验采样值。ST-MTS-AD 基于变分推断技术学习正常 MTS 样本集分布,由重构概率对数似然确定 MTS 异常片段。 4 个公开数据集上的实验表明, ST-MTS-AD 模型比典型相关基线模型的 F1 分数有明显提升。

2023-08-22

专升本知识点和题型大全

专升本英语和高数是两门重要的考试科目,以下是针对这两门科目的一些介绍和备考建议: 1. 英语考试:专升本英语考试通常会涉及到英语听力、阅读、写作等方面的内容。备考建议包括: - 找到合适的备考资料,如教材、复习笔记等,多做英语听力、阅读、写作方面的练习题。 - 建立良好的英语学习习惯,如每天坚持听英语、读英语、说英语、写英语等练习,保持语言技能的技巧。 - 多参加英语角等社交活动,增强英语听说能力和社交互动能力。 2. 高数考试:专升本高等数学考试主要是考察考生的数学运算能力和数学建模能力。备考建议包括: - 充分掌握高数基本概念和公式,如数列、极限、导数、积分、微分方程等。 - 多做高数练习题,包括基础题目和解题技巧题目,理解每道题目的解题思路和方法。 - 参加各种高数辅导班、高数学习小组等,多与同学交流、学习,提高数学解题思维和技巧。 在备考中,合理安排时间,充分掌握考试要点,积极参加模拟考等练习,对于考生备考专升本英语和高数考试都是非常有帮助的。

2023-03-27

仿山楂岛完整版代码flask

为每一个人开放的留言系统,匿名留言,开放交流

2022-08-15

Markdown语法详解

MarkDown是世界上最优美最简洁的写博客的语言,全部用法汇总如下,请慢用!! Markdowm语法001:标题 Markdowm语法002:引用 Markdown语法003:斜体和粗体、红色显示及其他字体颜色 Markdown语法004:链接和图片 Markdown语法005:分割线 Markdown语法006:中文首行缩进 Markdown语法007:表格 Markdown语法008:定义列表(有序列表、无序列表、缩进列表) Markdown语法009:行内代码和代码块 Markdown语法010:脚注 Markdown语法011:目录 Markdown语法012:UML 图(序列图和流程图) Markdown语法:013:离线写博客 Markdown语法014:浏览器兼容 Markdown语法015:快捷键 Markdown语法016:总结

2022-04-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除