自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

惊鸿若梦一书生

从绝望中寻找 希望, 人生终将辉煌

  • 博客(809)
  • 资源 (1)
  • 收藏
  • 关注

原创 通信原理 | matlab实现QPSK信号的产生与调制

【代码】matlab实现QPSK信号的产生与调制。

2022-08-17 20:05:32 6886

原创 通信原理 | rcosdesign 原理 | matlab中rcosdesign函数 | 升余弦滚降成型滤波器

beta滚降系数,取值0~1之间,决定频宽和陡峭程度(值越大频带越窄,越陡峭)。取值一般大于0.2。下图是滚降系数不同的对比,可以看出,设计一个升余弦滤波器总共需要上述三个参数。shape可选参数。可不加,可加上’normal’,可加上’sqrt’。我们可以看到阶段范围为10,每个范围采样点数为6,上图共存在60个采样点。我们可以看到阶段范围为6,每个范围采样点数为4,上图共存在24个采样点。sps单个符号范围的采样个数(每个符号上有几个采样点)当选择’sqrt’时,返回一个平方根升余弦滤波器。...

2022-08-02 09:39:42 9589 1

原创 Python程序设计 第7章:Python面向对象编程

Python程序设计 第7章:Python面向对象编程7.1 面向对象编程概述7.1.1 OOP的产生7.1.2 OOP核心思想7.1.3 OOP特征7.2 类和对象7.2.1 类的创建7.2.2 对象的创建7.2.3 类的属性7.2.4 类的方法7.2.5 内部类7.2.6 魔术方法7.3 类间关系7.3.1 依赖关系7.3.2 关联关系7.3.3 继承关系7.4 总结7.1 面向对象编程概述7.1.1 OOP的产生7.1.2 OOP核心思想7.1.3 OOP特征7.2 类和对象7.2.1 类

2022-04-05 15:42:47 7387 3

原创 Python深度学习:Bi-LSTM和LSTM在网络上有什么区别,对比来看

Python深度学习:Bi-LSTM和LSTM在网络上有什么区别,对比来看

2024-06-12 08:44:28 12

原创 Python基础:在多个.py文件组成的项目中如何安全的使用文件路径(绝对路径安全,相对路径可移植性好,如何选?)

在Python项目中使用相对路径时,路径的计算是基于当前执行脚本的位置,即当前工作目录(Current Working Directory, CWD)。这通常是你从中启动Python解释器的目录。这种方式在简单脚本或当你直接从命令行运行单个脚本文件时行得通,但在较大的项目或多层目录结构中可能导致路径错误。要确保在多个.py。

2024-06-03 17:27:43 145

原创 Python数据分析【Numpy系列】np.linspace()用法详解

`np.linspace()` 是 NumPy 库中一个非常有用的函数,它用于在指定的区间内生成等间距的样本值。这个函数非常适合在数值分析、数据可视化和信号处理等领域生成数据点。

2024-06-03 11:17:49 258

原创 Pytorch实用教程:为什么定义模型时,没有输入形参,但是使用时可以直接传入输入数据?

在 PyTorch 中,当你定义一个模型,即使在模型定义时没有显式声明接收输入数据的参数,模型的使用仍然可以通过直接传入输入数据来进行。这是因为模型类继承自 `torch.nn.Module`,而 `torch.nn.Module` 已经预定义了如何处理输入数据的方式。

2024-05-30 16:12:38 106

原创 Python基础:Python中类型注解的详细介绍

Python 中的类型注解是 Python 3.5 引入的功能,主要用于提供关于变量、函数参数和函数返回值类型的额外信息。类型注解不影响 Python 程序的运行时行为,因为 Python 仍然是一种动态类型语言,注解不会强制类型检查。但它们对于代码维护、可读性、以及通过静态类型检查工具(如 MyPy)提高代码质量非常有用。

2024-05-30 16:03:10 43

原创 Pytorch实用教程:super(MLP,self).__init__()和super().__init__()有什么区别?

在 Python 中,super()函数用于调用父类(超类)的方法。它的使用在继承关系中非常常见,特别是在初始化继承自父类的属性时。在 PyTorch 中,这通常见于初始化nn.Module类的子类。super()的两种调用方式有微妙的差别,但在 Python 3 中常常用来达到同样的目的。这种写法在 Python 2 中非常常见。这里,super()被调用时需要指定当前类名(MLP)和当前实例(self。

2024-05-30 14:50:55 194

原创 Pytorch实用教程:pytorch中nn.Linear()用法详解 | 构建多层感知机 | nn.Module的作用 | nn.Sequential的作用

Pytorch实用教程:pytorch中nn.Linear()用法详解 | 构建多层感知机 | nn.Module的作用 | nn.Sequential的作用

2024-05-30 14:40:11 314

原创 Pytorch实用教程:pytorch中 argmax(dim)用法详解

是 PyTorch 中的一个函数,用于找出指定维度上最大值的索引。argmax函数是在多维张量上进行操作的,通过dim参数可以指定在哪一个维度上查找最大值。

2024-05-29 14:17:57 253

原创 Python深度学习:【模型系列】一文搞懂Transformer架构的三种注意力机制

注意力机制最初受到人类视觉注意力的启发,目的是让模型在处理大量信息时能够聚焦于当前任务最为相关的部分。在深度学习中,注意力机制允许模型动态地将关注点分配到输入数据的重要部分上,提高了模型处理信息的效率和效果。这种机制尤其在自然语言处理和图像识别领域表现出强大的能力,能够显著提升模型处理序列数据的性能。Transformer 通过其独特的自注意力层和多头注意力机制,配合位置编码和专门的结构设计,极大地。

2024-05-28 20:44:57 67

原创 Python深度学习:【模型系列】Transformer面试灵魂20问

Transformer模型是一种基于自注意力机制的神经网络架构,主要用于处理序列数据,如自然语言处理任务。它由Google在2017年提出,并在“Attention is All You Need”这篇论文中首次公开。Transformer模型的核心思想是利用自注意力机制来捕捉序列中的依赖关系,从而实现对序列数据的有效处理。Transformer模型主要由编码器和解码器两部分组成,每部分都包含多层自注意力机制和前馈神经网络。编码器负责将输入序列转换为一种内部表示,而解码器则利用这种内部表示来生成输出序列。

2024-05-28 20:40:18 136

原创 Pytorch实用教程:多分类任务中使用的交叉熵损失函数nn.CrossEntropyLoss

`nn.CrossEntropyLoss` 是 PyTorch 中用于`多分类任务`的`标准损失函数`。它结合了 `nn.LogSoftmax` 和 `nn.NLLLoss`(负对数似然损失)。在多分类任务中,这个损失函数能够有效地评估模型预测的概率分布和真实标签之间的差异。

2024-05-28 19:28:28 572

原创 Pytorch实用教程:torch.cat()函数的用法详解

torch.cat是 PyTorch 中用于沿指定维度连接张量的函数。

2024-05-28 16:04:28 205

原创 【20天拿下Pytorch:Day 8】损失函数losses

一般来说,监督学习的目标函数由损失函数和正则化项组成。Pytorch中的损失函数一般在训练模型时候指定。注意Pytorch中内置的损失函数的参数和tensorflow不同,是y_pred在前y_true在后,而Tensorflow是y_true在前,y_pred在后。对于回归模型,通常使用的内置损失函数是均方损失函数nn.MSELoss。对于二分类模型,通常使用的是二元交叉熵损失函数nn.BCELoss(输入已经是sigmoid激活函数之后的结果) 或者(输入尚未经过nn.Sigmoid激活函数)。

2024-05-28 14:09:15 1208

原创 Python数据分析:【NumPy系列】numpy中形状变换的函数用法总结

函数会改变数组的形状和大小,但可能会丢失数据或添加无关数据,因为它只是简单地重新解释内存中的数据。请注意,当你改变数组的形状时,要确保新的形状与原始数组中的元素总数相匹配,否则你可能会丢失数据或得到无效的结果。这些属性分别返回数组的维度数、形状和元素总数。在NumPy中,有许多函数可以帮助你改变数组的形状。函数用于改变数组的形状,而不改变其数据。例如,你可以将一个二维数组的行和列交换。函数用于增加数组的维度。通常更快,因为它返回的是原始数组的视图(如果可能),而。函数用于从数组的形状中移除长度为1的维度。

2024-05-27 17:08:12 47

原创 Python深度学习:【调制识别系列】RML2018画图

这段代码提供了三种不同的方式来可视化和比较不同调制方式和信噪比下的信号星座图。这对于信号处理和通信系统的性能分析非常有用。类,用于绘制和保存不同调制方式和不同信噪比(SNR)下的信号星座图。我会为你详细解释这个类的功能和每部分代码的作用。如果你也想执行这个方法,只需取消注释即可。这个方法会为每种调制方式和每种信噪比单独绘制星座图。这个方法旨在将同一种信噪比(SNR)下的不同调制方式的星座图画到同一张图上。

2024-05-27 15:35:04 1247

原创 Python深度学习:最全的RML2018a数据集预处理代码

【代码】Python深度学习:最全的RML2018a数据集预处理代码

2024-05-24 14:05:49 166

原创 【20天拿下Pytorch:Day 8】模型层layers

如果Pytorch的内置模型层不能够满足需求,我们也可以通过继承nn.Module基类构建自定义的模型层。实际上,pytorch不区分模型和模型层,都是通过继承nn.Module进行构建。因此,我们只要继承nn.Module基类并实现forward方法即可自定义模型层。下面是Pytorch的nn.Linear层的源码,我们可以仿照它来自定义模型层。if bias:else:结果代码注释:这段代码定义了一个名为Linear的类,该类继承了PyTorch的nn.Module。

2024-05-23 20:02:24 970 1

原创 【20天拿下Pytorch:Day 7】Dataset和DataLoader

Pytorch通常使用Dataset和DataLoader这两个工具类来构建数据管道。Dataset定义了数据集的内容,它相当于一个类似列表的数据结构,具有确定的长度,能够用索引获取数据集中的元素。而DataLoader定义了按batch加载数据集的方法,它是一个实现了__iter__方法的可迭代对象,每次迭代输出一个batch的数据。DataLoader能够控制batch的大小,batch中元素的采样方法,以及将batch结果整理成模型所需输入形式的方法,并且能够使用多进程读取数据。

2024-05-23 15:30:47 1039

原创 从一个时间序列数据中生成一个Markov Transition Field (MTF)

Markov Transition Field(马尔科夫转移场,简称MTF)是一个用来表示时间序列数据中不同时间点之间状态转移概率的可视化工具。简单来说,它展示了一个时间点上的状态如何可能转移到另一个时间点的状态,这些转移概率是通过统计数据得出的。通过这种方式,MTF能帮助我们直观地理解时间序列数据中状态的变化规律和趋势。

2024-05-22 15:53:04 375

原创 【20天拿下Pytorch:Day 4】Pytorch的层次结构:低阶API(以线性回归模型和DNN二分类模型为例,含仿真数据生成和代码)

【20天拿下Pytorch:Day 3】Pytorch的层次结构:低阶API(以线性回归模型和DNN二分类模型为例,含仿真数据生成和代码)

2024-05-20 11:06:50 606

原创 Pytorch实用教程:随机数相关函数:torch.rand()、torch.randn()、torch.randint()用法介绍

Pytorch实用教程:随机数相关函数:torch.rand()、torch.randn()、torch.randint()用法介绍

2024-05-20 09:23:03 94

原创 【20天拿下Pytorch:Day 3】Pytorch的核心概念:动态计算图

PyTorch中的动态计算图是指在PyTorch框架中,计算图是动态构建的。这意味着在每次前向传播过程中,计算图都会重新构建。与静态计算图不同,动态计算图允许用户在运行时动态地定义、修改和调整计算图,而无需预先定义完整的计算图结构。Pytorch的计算图由节点和边组成,节点表示张量或者Function边表示张量和Function之间的依赖关系。解释:Function实际上就是 Pytorch中各种对张量操作的函数Pytorch中的计算图是动态图。这里的动态主要有两重含义。

2024-05-17 11:24:34 985

原创 Pytorch实用教程:x.grad、zero_grad()、autograd.grad()用法总结

在PyTorch中,当你对一个需要计算梯度的张量(通常通过设置`requires_grad=True`来指定)执行了前向传播和反向传播后,该张量的梯度会自动计算并存储在`.grad`属性中。这个`.grad`属性是一个与原始张量形状相同的张量,其中包含了关于原始张量中每个元素的梯度。

2024-05-16 20:51:10 66

原创 【20天拿下Pytorch:Day 2】Pytorch的核心概念:自动微分机制

神经网络通常依赖`反向传播`求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情。而深度学习框架可以帮助我们`自动地完成这种求梯度运算`。Pytorch一般通过反向传播 `backward 方法` 实现这种求梯度计算。该方法求得的梯度将存在`对应自变量张量`的`grad属性`下。除此之外,也能够调用`torch.autograd.grad` 函数来实现求梯度计算。这就是Pytorch的`自动微分机制`。

2024-05-16 19:15:47 599

原创 【20天拿下Pytorch:Day 1】Pytorch的核心概念:张量数据结构

Pytorch的基本数据结构是张量Tensor。张量即多维数组。Pytorch的张量和numpy中的array很类似。今天主要介绍`张量的数据类型`、`张量的维度`、`张量的尺寸`、`张量`和`numpy数组`等基本概念。

2024-05-16 15:34:46 764

原创 【科普系列】到底什么是语义通信?语义通信跟现有通信有什么区别?

在探讨什么是语义通信之前,我们先回顾一下传统的通信方式。传统通信,如电话、电视或因特网,主要关注的是如何高效、准确地传输信号或数据。例如,无论是语音通话还是文件传输,传统通信技术的目标是确保接收到的信号或数据与发送的原始信号或数据尽可能一致。然而,随着人工智能技术的发展和应用需求的日益复杂,仅仅传输数据已不能满足需求,人们开始探索一种全新的通信方式——语义通信。

2024-05-09 21:45:08 542

原创 【本科毕业】软件工程专业实习评价总结50条

实习期间,实习生在技术上表现良好,对软件工程的理论和实践也有深入的理解,是一个发展潜力大的软件工程师。实习生对软件开发有深厚的热情,对工作投入极大,常常是项目成功的关键,表现出极高的专业投入。在面对困难和挑战时,展现出不畏艰难的精神,能够找到解决问题的方法,表现出坚韧不拔的态度。在实习期间,表现出较好的创新思维,能够在项目中提出新的观点和方法,为项目带来新的创意。实习期间,他对软件的安全性问题给予了足够的重视,增强了产品的安全保障,提升了用户信任。

2024-04-29 10:22:48 585

原创 Python深度学习:【模型系列】强化学习简介及优质学习资源

强化学习(Reinforcement Learning, RL)是机器学习的一个子领域,它涉及智能体agent)通过与环境的交互来学习如何在给定的任务中最大化某种累积奖励。强化学习不同于监督学习,它不依赖于预先标注的输入/输出对,而是通过试错的方法发现奖励信号最大化的策略。

2024-04-28 17:18:40 330

原创 Pytorch实用教程:Pytorch的nn.LSTM中参数的含义

PyTorch的`nn.LSTM`模块是一个用于构建长短期记忆(LSTM)网络的类,它是一种特殊类型的循环神经网络(RNN),能够学习序列数据中的`长期依赖关系`。LSTM网络被广泛用于`时间序列预测`、`自然语言处理`、`语音识别`等领域。下面,我将简要介绍`nn.LSTM`的基本概念和如何在PyTorch中使用它。

2024-04-25 11:40:51 478

原创 【科普系列】显卡(GPU)中一些关键参数的含义介绍

显卡是计算机中负责处理图形和视频显示的硬件部件。GPU(图形处理单元):显卡的核心部件,负责执行复杂的计算任务,以快速渲染图形。GPU的类型核心数量和架构会直接影响显卡的性能。显存(视频内存):显存用于存储正在被GPU处理的图形数据。显存的容量和类型(如GDDR5、GDDR6)决定了显卡处理高分辨率图形和复杂图形效果的能力。显存带宽:显存带宽是指显存可以多快地与GPU交换数据的速度。带宽越高,GPU处理图形数据的能力越强。核心频率:指GPU核心运行的速度,以MHz(兆赫)计。

2024-04-25 10:41:39 1054

原创 Python深度学习:【开源数据集系列】RML2018数据集下载、介绍、预处理

数据集包含24种调制样式:classes =[‘32PSK’,‘16APSK’,‘32QAM’,‘FM’,‘GMSK’,‘32APSK’,‘OQPSK’,‘8ASK’,‘BPSK’,‘8PSK’,‘4ASK’,‘16PSK’,‘64APSK’,‘128QAM’,‘128APSK’,‘64QAM’,‘QPSK’,‘256QAM’,‘OOK’,‘16QAM’]信噪比。

2024-04-25 08:57:03 227

原创 Python基础:【习题系列】判断题(三)

Python基础:【习题系列】判断题(三)

2024-04-24 21:55:34 62

原创 Python基础:【习题系列】判断题(二)

Python基础:【习题系列】判断题(二)

2024-04-24 21:45:03 75

原创 Python基础:【习题系列】判断题(一)

Python基础:【习题系列】判断题(一)

2024-04-24 21:42:18 98

原创 Python基础:易错题汇总

Python基础:【习题系列】多选题(二)

2024-04-24 21:37:52 77

原创 Python基础:【扩展系列】Python对小程序或App进行自动化操作常用框架

Python基础:【扩展系列】Python对小程序或App进行自动化操作常用框架

2024-04-24 21:19:36 300

原创 Python基础:【习题系列】面向对象

Python基础:【习题系列】面向对象

2024-04-24 20:58:40 208 2

QPSK是一种常用的数字调制技术,它将数据信号调制到一个载波波形上,通过改变载波的相位来表示数据 这种调制技术因其相对高效的频谱

### QPSK信号的产生 在MATLAB中生成QPSK信号主要涉及以下几个步骤: 1. **二进制数据生成**:首先,我们需要生成或提供一串二进制数据,这将是我们要传输的信息。 2. **符号映射**:在QPSK调制中,每两位二进制数据会映射为一个符号,这意味着每个符号可以代表4种可能的状态之一(00、01、10、11)。这一步涉及将二进制数据分成两位一组,并将每组映射到一个特定的相位上。例如,00、01、10和11可能分别映射到相位0°、90°、180°和270°。 3. **调制**:在这个阶段,映射后的符号会调制到载波上。具体来说,每个符号会根据其对应的相位改变载波的相位,从而生成QPSK信号。这可以通过在MATLAB中使用相应的数学公式和函数来实现。 4. 波形生成:最后,根据上述调制过程,我们可以生成并可视化QPSK信号的波形,以便于观察和分析。

2024-04-08

基于改进Apriori算法的地铁故障关联规则挖掘

地铁作为城市公共客运的重要载体, 其系统设备在运营过程中难免发生一些故障 。 因此, 应用数据挖掘技术 对已有地铁故障数据进行关联规则挖掘, 分析其影响, 对故障预警与风险危害评估具有重大意义 。 针对地铁故障数 据种类多样 、 影响程度难以界定等问题, 建立考虑故障关联的改进 Apriori 算法, 与经典的 FP-Growth 算法进行对比, 对地铁故障关联规则进行研究, 优化该算法的基本思想和流程 。 选取某地铁 2020 年设备故障数据为例, 对其进行详 细地分析, 基于 Python 语言实现建模仿真, 输出得到车载 ATP 故障 、 信号设备故障等多类故障之间的关联规则结果, 为地铁故障影响程度分析 、 故障诊断 、 故障预警 、 风险危害等级划分等提供重要的参考依据 。

2024-01-18

基于支持向量机的通信干扰效果在线评估算法

针对当前干扰效果第三方评估与实际干扰效果脱节问题, 提出了一种基于支持向量机的 干扰效果在线评估算法。 首先, 以通信电台为作战对象分析了其抗干扰行为参数; 其次, 提出 了以通信信号体制、 功率、 编码方式行为参数变化作为干扰效果在线评估依据的方法, 构造了 行为学习样本库; 最后, 通过仿真实验验证了算法的有效性, 利用 Link - 16 的仿真平台进行了 实验, 验证了样本库的可靠性。

2024-01-18

Python数据科学速查表

Python数据科学速查表 - Bokeh Python数据科学速查表 - Jupyter Notebook Python数据科学速查表 - Keras Python数据科学速查表 - Matplotlib 绘图 Python数据科学速查表 - Numpy 基础 Python数据科学速查表 - Pandas 基础 Python数据科学速查表 - Pandas 进阶 Python数据科学速查表 - Python 基础 Python数据科学速查表 - Scikit-Learn Python数据科学速查表 - SciPy Python数据科学速查表 - Seaborn Python数据科学速查表 - Spark RDD 基础 Python数据科学速查表 - Spark SQL 基础 Python数据科学速查表 - 导入数据

2024-01-16

短波通信协议智能识别技术研究

现代化作战中,信息对抗很大程度上决定了战争的走向。战场通信主要依靠短 波通信方式实现, 短波通信协议识别是信息对抗和民用应急快速组网的技术基础。 随着短波通信协议的不断更新, 短波通信涌现出了更复杂的形式,对协议识别提出 了更高的要求。 因此,引入智能化的短波通信协议识别有着潜在的应用价值。本文 重点研究了数据链路层的短波通信协议识别方法。 深入研究目前常用的短波通信协议数据帧格式,首先建立了基于数据链路层 的短波通信协议识别框架和工作流程。其中包含预处理模块、分类识别模块和输出 模块。 在实验室条件下,获取真实短波信号困难。因此,本文通过软件建立了短波 通信信号生成模块。 按照模块化的思想完成了五种常用的短波通信协议的物理层 和数据链路层实现,并在短波信道内添加了可配置的多径干扰、突变和噪声干扰以 模拟真实的信道环境。通过信号生成模块生成了训练信号和测试信号的数据集。 在预处理模块,直接对数据流进行帧切分会造成部分数据帧空集现象,本文以 帧同步码为标志将数据流切分成帧。提出了一种适用于比特流数据的 N-Eclat算法, 实现对帧同步码进行识别。用信号生成模块产生的数据进行测试。

2024-01-16

基于深度学习的通信信号种类识别研究

通信信号种类识别技术是基于信号处理和模式识别理论的技术,旨在通过对接收到的信号进行分析和判断,确定信号的特征和种类。该技术被广泛应用于电子对抗、无线电侦察、认知无线电、网络安全等领域。随着现代通信技术的不断发展,各种新通信设备和协议不断涌现,使得通信信号种类迅猛增加。同时,由于个别信号协议之间具有很高的相似度,造成信号种类难以准确区分。这些问题对传统的通信信号种类识别方法带来了巨大的挑战。因此,为适应现代通信系统高速化、智能化、实时化的通信需求,开展针对通信信号种类识别的研究在军事和民用领域都具有非常重要的意义。本文以深度神经网络为基础,针对通信信号种类识别技术涉及的自动调制识别、信道编码识别、以及特定协议信号识别等技术领域开展深度研究

2024-01-16

融合SENet和Trans...mer的应用层协议识别方法.caj

协议识别技术在网络通信和信息安全领域具有至关重要的地位和作用。针对现有基于时空特征的协议识别方法提取协议特征不充分、不全面的问题,提出了一种基于SENet和Transformer的应用层协议识别方法。协议识别技术很重要。方法关注协议数据的时空特征,由加入SENet注意力的残差网络构成的空间特征提取模块和Transformer网络编码器构成的时间提取模块组成。空间特征提取阶段,在残差网络结构中加入SE块获取多个卷积通道间的联系,自适应地为通道分配权重,提取不同通道中更加活跃的协议空间特征;时间特征提取阶段,由基于多头注意力机制的Transformer编码器通过堆叠的方式构建时间特征提取模块,利用输入数据的位置信息全面地获取协议数据的时间特征。通过对更加充足的空间特征和更加全面的时间特征的提取和学习,可以获得更有效的协议识别信息,进而提高协议识别性能。ISCX2012和CSE_CIC_IDS_2018混合数据集上的实验结果表明,所提模型的总体识别准确率达到了99.20%,F1值达到98.99%,高于对比模型。

2024-01-15

python调制识别数据及代码

数据集包含了从-20dB 到+18dB 总共 20 个信噪比(步长为 2)下的 11 种调制信号, 包括 AM-DSB、 AM-SSB 和 WBFM 三种模拟调制信号,以及 BPSK、 QPSK、 8PSK、 CPFSK、 GFSK、 PAM4、 QAM16 和 QAM64 八种数字调制信号。其中信号的中心频率为 200KHz,采样频率为 1Msamp/s,且每个信噪比下每种调制信号包含 1000 个信号。其中每个信号包含 IQ 两路数据,且每一路数据都包含有 128 个采样点。

2024-01-02

随机 Transformer;变分自编码器;多维时间序列;异常检测

针对已有基于变分自编码器( VAE)的多维时间序列( MTS)异常检测模型无法在隐空间中传播随机变量间的长时依赖性问题,提出了一种融合 Transformer 编码器和 VAE 的随机 Transformer MTS 异常检测模型( ST-MTS-AD)。在 ST-MTS-AD 的推断网络中, Transformer 编码器产生的当前时刻 MTS 长时依赖特征和上一时刻随机变量的采样值被输入多层感知器,由此生成当前时刻随机变量的近似后验分布,实现随机变量间的时序依 赖。采用门控转换函数( GTF)生成随机变量的先验分布, ST-MTS-AD 的生成网络由多层感知器重构 MTS 各时刻取值分布,该多层感知器的输入为推断网络生成的 MTS 的长时依赖特征和随机变量近似后验采样值。ST-MTS-AD 基于变分推断技术学习正常 MTS 样本集分布,由重构概率对数似然确定 MTS 异常片段。 4 个公开数据集上的实验表明, ST-MTS-AD 模型比典型相关基线模型的 F1 分数有明显提升。

2023-08-22

专升本知识点和题型大全

专升本英语和高数是两门重要的考试科目,以下是针对这两门科目的一些介绍和备考建议: 1. 英语考试:专升本英语考试通常会涉及到英语听力、阅读、写作等方面的内容。备考建议包括: - 找到合适的备考资料,如教材、复习笔记等,多做英语听力、阅读、写作方面的练习题。 - 建立良好的英语学习习惯,如每天坚持听英语、读英语、说英语、写英语等练习,保持语言技能的技巧。 - 多参加英语角等社交活动,增强英语听说能力和社交互动能力。 2. 高数考试:专升本高等数学考试主要是考察考生的数学运算能力和数学建模能力。备考建议包括: - 充分掌握高数基本概念和公式,如数列、极限、导数、积分、微分方程等。 - 多做高数练习题,包括基础题目和解题技巧题目,理解每道题目的解题思路和方法。 - 参加各种高数辅导班、高数学习小组等,多与同学交流、学习,提高数学解题思维和技巧。 在备考中,合理安排时间,充分掌握考试要点,积极参加模拟考等练习,对于考生备考专升本英语和高数考试都是非常有帮助的。

2023-03-27

仿山楂岛完整版代码flask

为每一个人开放的留言系统,匿名留言,开放交流

2022-08-15

Markdown语法详解

MarkDown是世界上最优美最简洁的写博客的语言,全部用法汇总如下,请慢用!! Markdowm语法001:标题 Markdowm语法002:引用 Markdown语法003:斜体和粗体、红色显示及其他字体颜色 Markdown语法004:链接和图片 Markdown语法005:分割线 Markdown语法006:中文首行缩进 Markdown语法007:表格 Markdown语法008:定义列表(有序列表、无序列表、缩进列表) Markdown语法009:行内代码和代码块 Markdown语法010:脚注 Markdown语法011:目录 Markdown语法012:UML 图(序列图和流程图) Markdown语法:013:离线写博客 Markdown语法014:浏览器兼容 Markdown语法015:快捷键 Markdown语法016:总结

2022-04-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除