案例 83: 处理缺失数据 知识点讲解 在数据分析和预处理中,处理缺失数据是一个重要的步骤。Pandas 提供了多种方法来处理缺失值,例如填充缺失值或删除含有缺失值的行或列。 填充缺失值: 使用 fillna 方法可以将缺失值(NaN)替换为指定的值。 删除含缺失值的行或列: 使用 dropna 方法可以删除包含缺失值的行或列。 示例代码 # 准备数据和示例代码的运行结果,用于案例 83 # 示例数据 data_handling_missing_data = { 'A': [1