Pandas实战100例 | 案例 83: 处理缺失数据

本文介绍了在数据分析中处理缺失数据的重要性,详细讲解了Pandas的填充缺失值(使用fillna方法)和删除含缺失值的行(使用dropna方法)。通过实例展示了数据处理过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

案例 83: 处理缺失数据

知识点讲解

在数据分析和预处理中,处理缺失数据是一个重要的步骤。Pandas 提供了多种方法来处理缺失值,例如填充缺失值或删除含有缺失值的行或列。

  • 填充缺失值: 使用 fillna 方法可以将缺失值(NaN)替换为指定的值。
  • 删除含缺失值的行或列: 使用 dropna 方法可以删除包含缺失值的行或列。
示例代码
# 准备数据和示例代码的运行结果,用于案例 83

# 示例数据
data_handling_missing_data = {
   
    'A': [1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值