【人工智能】Transformer、BERT、GPT:区别与联系

Transformer、BERT、GPT:区别与联系

近年来,Transformer、BERT、GPT 等模型在自然语言处理领域取得了巨大成功,深刻改变了我们对语言理解和生成的认识。它们之间既有区别,又存在紧密联系,共同推动了 NLP 的发展。

一、Transformer:革命性的架构

Transformer 是这一切的起点。它于 2017 年由 Google 提出,摒弃了传统的循环神经网络 (RNN)卷积神经网络 (CNN),完全基于自注意力机制 (Self-Attention) 来捕捉序列数据中的长距离依赖关系

  • 核心思想: 自注意力机制允许模型在处理每个词时,关注序列中所有其他词的重要性,从而更好地理解上下文信息。
  • 优势: 并行计算效率高,可处理长序列数据,在机器翻译等任务上取得了突破性进展。

二、BERT:双向编码器

BERT 是基于 Transformer 编码器部分构建的预训练语言模型,由 Google 于 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值