并查集之LeetCode1579. 保证图可完全遍历
前言
算法之并查集
一,1579. 保证图可完全遍历
Alice 和 Bob 共有一个无向图,其中包含 n 个节点和 3 种类型的边:
类型 1:只能由 Alice 遍历。
类型 2:只能由 Bob 遍历。
类型 3:Alice 和 Bob 都可以遍历。
给你一个数组 edges ,其中 edges[i] = [typei, ui, vi] 表示节点 ui 和 vi 之间存在类型为 typei 的双向边。请你在保证图仍能够被 Alice和 Bob 完全遍历的前提下,找出可以删除的最大边数。如果从任何节点开始,Alice 和 Bob 都可以到达所有其他节点,则认为图是可以完全遍历的。
返回可以删除的最大边数,如果 Alice 和 Bob 无法完全遍历图,则返回 -1 。
示例 1:
输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]]
输出:2
解释:如果删除 [1,1,2] 和 [1,1,3] 这两条边,Alice 和 Bob 仍然可以完全遍历这个图。再删除任何其他的边都无法保证图可以完全遍历。所以可以删除的最大边数是 2 。
示例 2:
输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,4],[2,1,4]]
输出:0
解释:注意,删除任何一条边都会使 Alice 和 Bob 无法完全遍历这个图。
示例 3:
输入:n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]]
输出:-1
解释:在当前图中,Alice 无法从其他节点到达节点 4 。类似地,Bob 也不能达到节点 1 。因此,图无法完全遍历。
提示:
1 <= n <= 10^5
1 <= edges.length <= min(10^5, 3 * n * (n-1) / 2)
edges[i].length == 3
1 <= edges[i][0] <= 3
1 <= edges[i][1] < edges[i][2] <= n
所有元组 (typei, ui, vi) 互不相同
通过次数14,593提交次数23,510
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/remove-max-number-of-edges-to-keep-graph-fully-traversable
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
二,解题思路
图在一个集合中就是并合回路
三, 代码
void init(int * union_find, int size)
{
for (int i = 0; i < size; ++i)
{
union_find[i] = i;
}
}
void show(int *union_find, int size)
{
printf("[");
for (int i = 0; i < size; ++i)
{
printf("%d, ", union_find[i]);
}
printf("]\n");
}
int getfriend(int * union_find, int v)
{
if (union_find[v] == v)
{
return v;
}
return union_find[v] = getfriend(&union_find[0], union_find[v]);
}
bool merge(int * union_find, int v1, int v2)
{
int index1 = getfriend(&union_find[0], v1);
int index2 = getfriend(&union_find[0], v2);
if (index1 != index2)
{
if (index2 > index1)
{
union_find[v2] = v1;
union_find[index2] = v1;
}
else if (index2 < index1)
{
union_find[v1] = v2;
union_find[index1] = v2;
}
return true;
}
return false;
}
int maxNumEdgesToRemove(int n, int** edges, int edgesSize, int* edgesColSize)
{
int union_finda[n+1];
int union_findb[n+1];
init(&union_finda[0], n+1);
init(&union_findb[0], n+1);
int counta = n-1;
int countb = n-1;
int count = 0;
int w = 0;
int b = 0;
//共同的边
for (int i = 0; i < edgesSize; ++i)
{
if (edges[i][0] == 3)
{
if(merge(&union_finda[0], edges[i][1], edges[i][2]))
{
--counta;
}
if (merge(&union_findb[0], edges[i][1], edges[i][2]))
{
--countb;
}
else
{
++b;
++count;
}
}
}
// show(&union_finda[0], n+1);
// show(&union_findb[0], n+1);
for (int i = 0; i < edgesSize; ++i)
{
if (edges[i][0] == 1)
{
//判断当前集合是否可以删除 不可以删除放到union_finda中, 可以删除放 删除的边数到count中
if (merge(&union_finda[0], edges[i][1], edges[i][2]))
{
--counta;
}
else if (merge(&union_findb[0], edges[i][1], edges[i][2]))
{
--countb;
}
else
{
++count;
}
// _union(&union_findb, edges[i][1], edges[i][2]);
}
}
// show(&union_finda[0], n+1);
for (int i = 0; i < edgesSize; ++i)
{
if (edges[i][0] == 2)
{
if (merge(&union_findb[0], edges[i][1], edges[i][2]))
{
--countb;
}
else if (merge(&union_finda[0], edges[i][1], edges[i][2]))
{
--counta;
}
else
{
++count;
}
// _union(&union_findb, edges[i][1], edges[i][2]);
}
}
// show(&union_findb[0], n+1);
// if ()
// printf("w = %d, b = %d, count = %d, counta = %d, countb = %d\n", w , b, count, counta, countb);
if (countb != 0|| counta != 0)
{
return -1;
}
return count;
}
总结
时间复杂度
O
(
N
l
o
g
N
)
O(Nlog_N)
O(NlogN)
空间复杂度
O
(
2
N
)
O(2N)
O(2N)