PyTorch Geometric (PyG) 安装教程

这篇博文详细介绍了在Linux系统上安装PyTorch Geometric(PyG)的步骤,针对PyTorch 1.11.0和不同CUDA版本提供了安装命令。博主分享了个人的安装经验,包括遇到的问题和解决方案,如遇到CUDA版本不匹配的问题,建议更换cudatoolkit版本。此外,还提到了安装main/nightly版本的情况。最后,博主通过测试代码验证了安装是否成功,虽然遇到了scipy和numpy版本不兼容的警告,但并未给出解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

诸神缄默不语-个人CSDN博文目录

PyG官方下载主页:Installation — pytorch_geometric documentation

以下仅考虑Linux系统的情况。(在Windows上跑GNN是不是太身残志坚了)

安装PyG需要先安装PyTorch,安装PyTorch可以参考我之前写的博文:PyTorch安装教程

以下根据PyTorch和对应的cuda版本来写PyG的安装方式。对应可行的安装时间会对应附上。
由于我在遇到对应情况时才能撰写对应博文,更多情况看以后我会不会遇上吧。

注意:这里对应的cuda版本,一般情况下只要跟cudatoolkit对应上就行。
除非遇上这种坑爹情况:Is PyTorch 1.7.1 and cuda 9.2 able to use neighbor_sample? · Issue #179 · rusty1s/pytorch_sparse
一般来说直接更换cudatoolkit版本就能解决,这还解决不了再说。

1. PyTorch 1.11.0

1.1 cudatoolkit 10.2

2022.8.3
我安装PyTorch用的Python3.8,命令是conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=10.2 -c pytorch

这是符合quick start的场景,所以可以直接安装:
在这里插入图片描述

conda install pyg -c pyg

1.2 cudatoolkit 11.3

2022.9.1
PyTorch 1.11.0+cu113(命令是:pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

pip install torch-scatter -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-sparse -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-geometric

2. main/nightly版本

2022.8.10
我是因为这个:After T.ToUndirected, the data.is_undirected() is still False · Discussion #5174 · pyg-team/pytorch_geometric 所以需要下main/nightly版本的。

官方GitHub README文件中的安装部分:https://github.com/pyg-team/pytorch_geometric#installation

(先把之前下过的PyG给conda uninstall了)

pip install torch-scatter -f https://data.pyg.org/whl/torch-1.11.0+cu102.html
pip install torch-sparse -f https://data.pyg.org/whl/torch-1.11.0+cu102.html
pip install pyg-nightly

(请自行替换torch和cuda的版本)

3. 测试安装效果

import torch
from torch_geometric.data import Data

edge_index = torch.tensor([[0, 1, 1, 2],
                           [1, 0, 2, 1]], dtype=torch.long)
x = torch.tensor([[-1], [0], [1]], dtype=torch.float)

data = Data(x=x, edge_index=edge_index)
print(data)

输出:

my_env/lib/python3.8/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.23.1
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
Data(x=[3, 1], edge_index=[2, 4])

可以看到这里scipy和numpy的版本不合。但是这样我也没有办法!

<think>好的,用户想在PyTorch 1.9.0上安装PyTorch Geometricpyg),并确保兼容性。首先,我需要回忆PyG安装步骤和相关依赖。根据提供的引用,特别是引用[3]和[4],安装PyG需要先安装几个依赖库,比如torch-scatter、torch-sparse等,这些库需要与PyTorch版本匹配。 用户使用的是PyTorch 1.9.0,所以需要确认CUDA版本是否一致。不过用户的问题中没有提到CUDA,可能是在CPU上安装。根据引用[3]中的命令,针对torch-1.9.0+cpu的安装链接是正确的。需要检查每个依赖库是否都有对应1.9.0的版本。 接下来,安装顺序应该是先安装PyTorch,然后按照PyG官网提供的命令安装各个依赖。用户提供的引用[3]中给出了具体的pip命令,每个库都指定了torch-1.9.0+cpu的链接,所以应该使用这些链接来确保兼容性。 另外,需要注意PyTorch Geometric本身的安装命令是否正确。在引用[3]的最后一步是pipinstalltorch-geometric,但可能需要指定版本或源。不过根据官方文档,直接安装通常会自动匹配依赖,但为了保险起见,还是按照引用中的命令来操作。 用户可能需要先确认PyTorch是否正确安装,版本是否为1.9.0。可以使用python -c "import torch; print(torch.__version__)"来检查。如果CUDA版本不匹配,可能需要调整,但用户的问题中可能不需要CUDA,所以可以忽略。 最后,安装完成后,建议用户运行一个简单的测试,例如导入torch_geometric,看是否有错误。如果有错误,可能是某些依赖库未正确安装,需要逐一检查。 总结步骤:安装PyTorch 1.9.0,然后依次安装各个依赖库,使用对应的CPU版本链接,最后安装PyG。</think>### 在 PyTorch 1.9.0 上安装 PyTorch Geometric (pyg) 的步骤 1. **确认 PyTorch 版本和 CUDA 兼容性** 首先检查 PyTorch 1.9.0 是否已正确安装。若需匹配 CUDA 版本,可通过以下命令验证: ```bash python -c "import torch; print(torch.__version__)" ``` 若为纯 CPU 版本,无需 CUDA 支持[^1]。 2. **安装 PyTorch Geometric 的依赖库** 根据 PyTorch 1.9.0 的版本,使用以下命令安装必要的依赖包(注意替换链接中的 `cpu` 或 `cu102`): ```bash pip install torch-scatter -f https://data.pyg.org/whl/torch-1.9.0+cpu.html pip install torch-sparse -f https://data.pyg.org/whl/torch-1.9.0+cpu.html pip install torch-cluster -f https://data.pyg.org/whl/torch-1.9.0+cpu.html pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.9.0+cpu.html ``` 若需要 CUDA 10.2 支持,将链接中的 `cpu` 改为 `cu102`[^3][^4]。 3. **安装 PyTorch Geometric 主库** 最后执行: ```bash pip install torch-geometric ``` 4. **验证安装** 运行以下代码检查是否成功安装: ```python import torch from torch_geometric.data import Data print(torch.__version__) # 应输出 1.9.0 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值