Re37:读论文 G2G Graph2Gauss Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Rank

本文探讨了一种无监督的图表征学习方法——DeepGaussianEmbedding,它将节点嵌入表示为高斯分布,以捕捉不确定性。通过个性化排名形式化,利用节点的k跳邻居进行排序,实现多尺度结构学习。实验涉及链接预测和节点分类任务,证明了该方法在inductive learning中的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

诸神缄默不语-个人CSDN博文目录

论文名称:Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking
论文下载地址:https://arxiv.org/abs/1707.03815
数据集、源码和其他附件下载地址:https://www.kdd.in.tum.de/g2g

本文是2018年ICLR论文,关注无监督inductive图表征学习任务(利用新节点的特征信息实现表征),可以处理plain/attributed, directed/undirected的场景。
本文认为,以前的工作都将节点嵌入为低维连续空间的point vectors,而本文将其嵌入为高斯分布 h i = N ( µ i , Σ i ) \mathbf{h}_i =\mathcal{N}(µ_i, Σ_i) hi=N(µi,Σi),以捕获表征中的不确定性(通过对其的分析,可以估计neighborhood diversity、检测图的intrinsic latent dimensionality)。
G2G使用personalized ranking formulation,利用网络结构中节点的自然顺序(跳-距离,应当同序)。

1. Uncertainty的重要性

在这里插入图片描述

2. G2G

  1. 表征节点特征,返回节点嵌入分布相关的参数
  2. 无监督损失函数→网络结构中节点的自然顺序→基于嵌入分布的不相似度量(这一步是用来将结构信息隐式学到表征中)

h i = N ( µ i , Σ i ) \mathbf{h}_i =\mathcal{N}(µ_i, Σ_i) hi=N(µi,Σi)
在这里插入图片描述
(N是节点数,D是初始特征维度)

嵌入目标:图中相似的节点,在嵌入域表征相似

personalized ranking formulation
利用节点的k跳邻居,对它们的嵌入与节点嵌入的距离进行排序

节点 i i i 的k跳邻居:
在这里插入图片描述

我们希望的是,邻居节点们的跳数,和它与目标节点在向量域嵌入的距离,有相同的排序关系:
在这里插入图片描述
即遵从这样的pairwise constraints:
在这里插入图片描述
超过一二阶相似度,得到局部和全局的多尺度结构

向量之间的不相似度量
在这里插入图片描述
因为本文的隐表示是分布,所以用不对称的KL散度(也对处理有向图有利):
在这里插入图片描述

2.1 第一部分:encoder

高斯分布中的 μ \mu μ Σ \Sigma Σ→先过一个 f θ f_\theta fθ,然后用其最后一层输入 μ \mu μ Σ \Sigma Σ

要diagonal covariance matrices
在这里插入图片描述

(呃其实这段我没看懂是啥意思!)

附录有介绍具体表征用的模型

2.2 第二部分:无监督损失函数

基于energy-based loss
penalizes ranking errors given the energy of the pairs(两个节点之间的KL散度就是energy)
square-exponential loss
在这里插入图片描述
在这里插入图片描述

valid三元组:
在这里插入图片描述

抽样策略(直接用正态分布可能导致低度数节点少)alternative node-anchored sampling strategy(细节待补)
在这里插入图片描述

附录有介绍与其他高斯嵌入方法的不同之处

3. 实验

其他略。做了链路预测和节点分类任务。测试了不同抽样策略,测试节点表征不确定性,测试inductive learning效果,做表征可视化,对特征encoder做了ablation study

附录还介绍了无法处理训练集中未出现过的节点的方法的edge cover问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值