目前主要收集免费内容,最多需要买本纸质书。
付费的如果有免费版本我也会收录。←2023.8.19:CSDN禁止分享了,有需私戳吧
链接如失效请联系我。
这个笔记主要是为我自己准备的,算是一个可公开的to do list(其实做不完的我也知道),所以不列举任何我写过完整笔记的资料。
文章目录
1. 数学
- 《计算机科学中的数学》
- Tom Leighton’s MIT 6.042J
- 北大民间数学学院学习指南:Math for Happiness
1. 微积分/高等数学
- 普林斯顿微积分读本
辅助学习资料:《图解普林斯顿微积分读本》系列合集 - 同济大学数学系. 高等数学(第7版)[M]. 北京: 高等教育出版社, 2014.
- 李忠,周建莹. 高等数学(第2版)[M]. 北京: 北京大学出版社, 2009.
- Joel Hass et al.Thomas’ Calculus: Early Transcendentals (Fourteenth Edition)[M]. Pearson, 2018.
- Ron Larson, and Bruce Edwards. Calculus (Eleventh Edition) [M]. Cengage Learning, 2018.
2. 数学分析
- 华东师范大学数学科学学院. 数学分析(第5版)[M]. 北京: 高等教育出版社, 2019.
- 常庚哲, 史济怀. 数学分析教程(第3版)[M]. 合肥: 中国科学技术大学出版社, 2012.
- Walter Rudin. Principles of Mathematical Analysis (Third Edition) [M]. McGraw-Hill Education, 1976.
- Vladimir A. Zoric. Mathematical Analysis (Second Edition) [M]. Springer, 2016.
- Elias M. Stein, and Rami Shakarchi. Real Analysis: Measure Theory, Integration, and Hilbert Spaces [M]. Princeton University Press,2004.
- Elias M. Stein, and Rami Shakarchi. Complex Analysis [M]. Princeton University Press,2005.
- Elias M. Stein, and Rami Shakarchi. Fourier Analysis: An Introduction [M]. Princeton University Press,2003.
- Elias M. Stein, and Rami Shakarchi. Functional Analysis: Introduction to Further Topics in Analysis[M]. Princeton University Press, 2011.
3. 线性代数
- Linear Algebra Done Right
- 丘维声. 简明线性代数[M]. 北京: 北京大学出版社, 2002.
- 居于马. 线性代数(第2版)[M]. 北京: 清华大学出版社, 2002.
- 李尚志. 线性代数[M]. 北京: 高等教育出版社, 2002.:难度较大,适合提高
- 李炯生. 线性代数(第2版)[M]. 合肥: 中国科学技术大学出版社, 2010.:亚洲第一难
- 龚昇. 线性代数(第2版)[M]. 合肥: 中国科学技术大学出版社, 2005.:适合提高
- 任广千, 谢聪, 胡翠芳. 线性代数的几何意义[M]. 西安: 西安电子科技大学出版社, 2015.
- Kuldeep Singh. Linear Algebra: Step by Step [M]. Oxford University Press,2014.
- Gilbert Strang. Introduction to Linear Algebra (Fifth Edition) [M]. Wellesley-Cambridge Press, 2016.
- David C. Lay et al. Linear Algebra and Its Application (Fifth Edition) [M]. Pearson, 2016.
- Sheldon Axler. Linear Algebra Done Right (Third Edition) [M]. Springer, 2015.
- Gerald Farin, and Dianne Hansford. Practical Linear Algebra: A Geometry Toobox (Third Edition) [M]. CRC Press, 2013.
- Gilbert Strang. Linear Algebra and Learning from Data [M]. Wellesley-Cambridge Press, 2019.:介绍线性代数及其在数据挖掘方面应用
4. 矩阵论
- 徐仲. 矩阵论简明教程(第3版)[M]. 北京: 科学出版社, 2014.
- 张贤达. 矩阵分析与应用(第2版)[M]. 北京: 清华大学出版社, 2013.
- Gene H. Golub, and Charles F. Van Loan. Matrix Computation (Fourth Edition) [M]. The Johns Hopkins University Press, 2013.
- Roger A. Horn, and Charles R. Johnson. Matrix Analysis (Second Edition) [M]. Cambridge University Press, 2013.
5. 统计学、概率论与测度论
- 《赤裸裸的统计学》
- 《统计数字会撒谎》
- 《深入浅出统计学》
- 盛骤, 谢式千, 潘承毅. 概率论与数理统计(第4版)[M]. 北京: 高等教育出版社, 2008.
- 陈希孺. 概率论与数理统计[M]. 合肥: 中国科学技术大学出版社, 2017.
- Jay L. Devore. Probability and Statistics for Engineering and the Sciences (Ninth Edition) [M]. Cengage Learning, 2016.
- Morris H. DeGroot, and Mark J. Schervish . Probability and Statistics (Forth Edition) [M]. Pearson, 2012.
- 高惠璇. 应用多元统计分析[M]. 北京大学出版社, 2004.
- 王静龙. 多元统计分析[M]. 科学出版社, 2008.
- T. W. Anderson. An Introduction to Multivariate Statistical Analysis (Third Edition) [M]. John Wiley & Sons, 2003.
- Richard A. Johnson, and Dean W. Wichern . Applied Multivariate Statistical Analysis (Sixth Edition) [M]. Pearson, 2007.
- 程士宏. 测度论与概率论基础[M]. 北京: 北京大学出版社, 2004.
- 严加安. 测度论讲义(第2版)[M]. 北京: 科学出版社, 2004.
- Krishna B. Athreya, and Soumendra N. Lahiri. Measure Theory and Probability Theory (Third Edition) [M]. Springer, 2006.
- Paul R. Halmos. Measure Theory [M]. Springer Science+ Business Media, 1974.
- 胡迪鹤. 高等概率论及其应用[M]. 北京: 高等教育出版社, 2008.
- 郑忠国. 高等统计学[M]. 北京: 北京大学出版社, 2012.
- Craig A. Mertler, and Rachel Vannatta Reinhart. Advanced and Multivariate Statistical Methods: Practical Application and Interpretation (Sixth Edition) [M]. Routledge, 2017.
- Eugene Demidenko. Advanced Statistics with Applications in R [M]. John Wiley & Sons, 2020.
- 哪些统计学的书让你相见恨晚? - 知乎
- 谢启南,韩兆洲.统计学原理(第六版).广东.暨南大学出版社.2006.09
- 贾俊平,何晓群,金勇进.统计学.北京:中国人民大学出版社,2015
6. 随机过程与概率模型
- 何书元. 随机过程[M]. 北京: 北京大学出版社, 2008.
- 张波, 张景肖. 应用随机过程[M]. 北京: 清华大学出版社, 2004.
- Sheldon M. Ross. Introduction to Probability Models (Twelfth Edition) [M]. Academic Press, 2019.
- Robert G. Gallager. Stochastic Processes: Theory for Applications [M]. John Wiley & Sons, 2013.
- David Forsyth. Probability and Statistics for Computer Science (Twelfth Edition) [M]. Springer, 2018.
- Luc Devroye et al. A Probabilistic Theory of Pattern Recognition [M]. Springer, 1997.
7. 运筹学
- 《运筹学》教材编写组. 运筹学(第4版)[M]. 北京: 清华大学出版社, 2013.
- 胡运权, 郭耀煌. 运筹学教程(第5版)[M]. 北京: 清华大学出版社, 2018.
- Frederick S. Hillier, and Gerald J. Lieberman. Introduction to Operation Research (Tenth Edition) [M]. McGraw-Hill Education, 2015.
- Hamdy A. Taha. Operation Research:An Introduction (Tenth Edition) [M]. Pearson, 2017.
8. 优化理论
- 陈宝林. 最优化理论与算法(第2版)[M]. 北京: 清华大学出版社, 2018.
- 高立. 数值最优化方法[M]. 北京: 北京大学出版社, 2014.
- Edwin K. P. Chong, and Stanislaw H. Zak. An Introduction to Optimization (Fourth Edition) [M]. John Wiley & Sons, 2013.
- Jorge Nocedal, and Stephen J. Wright. Numerical Optimization (Second Edition) [M]. Springer, 2006.
- Stephen Boyd, and Lieven Vandenberghe. Convex Optimization [M]. Cambridge University Press, 2004.
- Yuni Nesterov. Lectures on Convex Optimization (Second Edition) [M]. Springer, 2018.
2. 机器学习与深度学习基础
- 周志华《机器学习》
datawhalechina/pumpkin-book: 《机器学习》(西瓜书)公式详解 - CS229:机器学习
斯坦福官网:CS229: Machine Learning - 百面机器学习
- 百面深度学习
- 《美团机器学习实践》
- Datawhale人工智能培养方案V2.0 - 飞书云文档
- Anton Teaches Packy AI:讲师是前Meta研究员
- 花书
Deep Learning - 《动手学深度学习》 — 动手学深度学习 2.0.0 documentation
- 李沐的深度学习课 - 知学堂
- GitHub - boyu-ai/Hands-on-ML: https://hml.boyuai.com
- 深度学习工程师微专业 - 一线人工智能大师吴恩达亲研-网易云课堂 - 网易云课堂
fengdu78/deeplearning_ai_books: deeplearning.ai(吴恩达老师的深度学习课程笔记及资源)
fengdu78/Coursera-ML-AndrewNg-Notes: 吴恩达老师的机器学习课程个人笔记
原版(英文):DeepLearning.AI: Start or Advance Your Career in AI - 2018年的CS230:http://cs230.stanford.edu/syllabus/(助教提供的cheatsheet:Teaching - CS 230)
- CS229: Machine Learning
如何正确学习CS 229? - 知乎 - Machine Learning Specialization [3 courses] (Stanford) | Coursera
- 机器学习训练秘籍
deeplearning-ai/machine-learning-yearning-cn: Machine Learning Yearning 中文版 - 《机器学习训练秘籍》 - Andrew Ng 著 - 统计学习方法
datawhalechina/statistical-learning-method-solutions-manual: 统计学习方法习题解答,在线阅读地址:https://datawhalechina.github.io/statistical-learning-method-solutions-manual - 【机器学习】【白板推导系列】【合集 1~33】_哔哩哔哩_bilibili
- yechens/XiaoZhao-ChongChongChong: 机器学习算法,大厂面经,coding,算法比赛资源整合大礼包~助你校招乘风破浪!内容持续更新中,欢迎star🌟
- Datawhale学习生态伙伴 - 飞书云文档
- Datawhale人工智能培养方案V2.0 - 飞书云文档
- The Full Stack
- 莫烦Python机器学习系列
- 石头书
- 数据挖掘:概念与技术
- 《数学之美》
- 《Machine Learning Yearning》
- Neural networks and deep learning
- Machine Learning Mastery
- Python深度学习
- 深度学习入门——基于Python的理论与实现
- 床长的人工智能
- 纽约大学 LeCun的深度学习课
Yann LeCun’s Deep Learning Course at CDS - NYU Center for Data Science
DEEP LEARNING · Deep Learning
NYU Deep Learning SP21 - YouTube
Atcold/NYU-DLSP21: NYU Deep Learning Spring 2021 - 图宾根大学 Statistical Machine Learning (Summer term 2022)
- AMAI-GmbH/AI-Expert-Roadmap: Roadmap to becoming an Artificial Intelligence Expert in 2022
- 陈天奇的机器学习编译课程:MLC | 主页
- CPSC 340 and 532M - Machine Learning and Data Mining (Fall 2019)
- theepiccode/Awesome-Deep-Learning-Resources: An awesome collection of curated deep learning resources(Books, Tutorials, Blogs, Podcasts , …)
- Machine Learning textbook
- Understanding Deep Learning
- rufinv/Intro2AI-advanced-class: A version of the class designed for an audience with prior Math/CS background
- Free Course: Machine Learning from Columbia University | Class Central
- CPSC 540: Machine learning
CPSC 540 - Machine Learning (Winter 2017) - MIT Deep Learning 6.S191
MIT 6.S191: Introduction to Deep Learning - YouTube - MingchaoZhu/InterpretableMLBook: 《可解释的机器学习–黑盒模型可解释性理解指南》,该书为《Interpretable Machine Learning》中文版
Interpretable Machine Learning christophM/interpretable-ml-book: Book about interpretable machine learning - 神经网络与深度学习
- 合集·深度学习中的数学by齐宪标
- Yuni Nesterov. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Second Edition) [M]. Springer, 2009.
- Tom M. Mitchell. Machine Learning [M]. McGraw-Hill Education, 1997.
- Christopher Bishop. Pattern Recognition and Machine Learning [M]. Springer, 2006.
- Mehryar Mohri et al. Foundation of Machine Learning (Second Edition) [M]. The MIT Press, 2018.
- Kevin P. Murphy. Probabilistic Machine Learning: An Introduction [M]. The MIT Press, 2022.
- Shai Shalev-Shwartz, and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms [M]. Cambridge University Press, 2014.
- virgili0/Virgilio: Your new Mentor for Data Science E-Learning.
- 《Python机器学习实践指南》
- Stanford MLSys Seminar – Stanford MLSys Seminar Series
- [2024年新版] [中英字幕] 麻省理工学院深度学习导论 | 6.S191_哔哩哔哩_bilibili
- Neural networks and deep learning
- 《数据挖掘原理与算法》
- 《集体智慧编程》
- LLMs:业务角度路线—基于开源大模型实现对中文语料实战应用(企业级ChatGPT领域大模型-私有化实战八大步骤、提高LLMs模型中文性能的三大策略(直接原始LLMs进行指令微调/基于原始模型扩充词表-CSDN博客
- Python 机器学习/深度学习/算法专栏/LLM - 导读目录_机器学习python实战目录-CSDN博客
- 动手学机器学习
- [1hr Talk] Intro to Large Language Models - YouTube
- Foundations of Machine Learning
- 《Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI》
- PyTorch
- Learn PyTorch for deep learning in a day. Literally. - YouTube
- Pytorch 教程系列 | 莫烦Python
- yunjey/pytorch-tutorial: PyTorch Tutorial for Deep Learning Researchers
- datawhalechina/thorough-pytorch: PyTorch入门教程,在线阅读地址:https://datawhalechina.github.io/thorough-pytorch/
- bharathgs/Awesome-pytorch-list: A comprehensive list of pytorch related content on github,such as different models,implementations,helper libraries,tutorials etc.
xavier-zy/Awesome-pytorch-list-CNVersion: Awesome-pytorch-list 翻译工作进行中…
- CS 330 Deep Multi-Task and Meta Learning
- Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Expainable [M]. lulu.com, 2020.
- Judea Pearl. Causality: Models, Reasoning, and Inference (Second Edition) [M]. Cambridge University Press, 2009.
- 多模态
- CMU 2022多模态机器学习:11-777 MMML
1. LLM专场
- 【清华NLP】刘知远团队大模型公开课全网首发|带你从入门到实战_哔哩哔哩_bilibili
官网:OpenBMB - 让大模型飞入千家万户 - 【GLM课程】ChatGLM 大模型应用构建 & Prompt 工程_哔哩哔哩_bilibili
- (这个是科大讯飞家的)AI Prompt 工程师认证&学习指南 - 飞书云文档
- 大模型产业场景实战
- AGI创业营——解码AGI 对话大模型
- ERNIE Bot SDK基础教程
- ERNIE Bot SDK进阶教程
- 《动手学Agent应用开发》学习手册 - 飞书云文档
- AI Prompt 工程师认证&学习指南 - 飞书云文档
- microsoft/generative-ai-for-beginners: 12 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/
- # AI 严选 - 飞书云文档
- Home | CS324
- https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
【专业翻译,配套代码笔记】01.课程介绍_哔哩哔哩_bilibili
GitHubDaily/ChatGPT-Prompt-Engineering-for-Developers-in-Chinese: 《面向开发者的 ChatGPT 提示词工程》非官方版中英双语字幕 Unofficial subtitles of “ChatGPT Prompt Engineering for Developers”
面向开发者的GPT提示工程,国内大模型同样适用_哔哩哔哩_bilibili - https://learn.deeplearning.ai/courses/langchain/lesson/1/introduction
- https://www.deeplearning.ai/short-courses/building-systems-with-chatgpt/
- https://github.com/datawhalechina/llm-cookbook/
- https://learn.deeplearning.ai/
- https://learn.deeplearning.ai/courses/chatgpt-building-system/lesson/1/introduction
- https://learn.deeplearning.ai/courses/langchain-chat-with-your-data/lesson/1/introduction
- https://learn.deeplearning.ai/courses/huggingface-gradio/lesson/1/introduction
- https://learn.deeplearning.ai/courses/evaluating-debugging-generative-ai/lesson/1/introduction
- https://learn.deeplearning.ai/courses/finetuning-large-language-models/lesson/1/introduction
- https://learn.deeplearning.ai/courses/large-language-models-semantic-search/lesson/1/introduction
- https://learn.deeplearning.ai/courses/advanced-retrieval-for-ai/lesson/1/introduction
- https://learn.deeplearning.ai/courses/building-evaluating-advanced-rag/lesson/1/introduction
- https://learn.deeplearning.ai/courses/functions-tools-agents-langchain/lesson/1/introduction
- it-ebooks-0/aigc-books: 📚 暂存AIGC相关书籍
- 大模型产业场景实战
- Gemini API by Google | Online Course | Udacity
- datawhalechina/self-llm: 《开源大模型食用指南》基于Linux环境快速部署开源大模型,更适合中国宝宝的部署教程
- AGI创业营——解码AGI 对话大模型
- Coggle 30 Days of ML(24年4月):多模态图文问答 - 竞赛学习 - Coggle竞赛论坛
- GitHub - naklecha/llama3-from-scratch: llama3 implementation one matrix multiplication at a time
- GitHub - datawhalechina/llm-universe: 本项目是一个面向小白开发者的大模型应用开发教程,在线阅读地址:https://datawhalechina.github.io/llm-universe/
- GitHub - microsoft/generative-ai-for-beginners: 21 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/
- 《Build a Large Language Model (From Scratch)》
- OpenAI Academy
- https://rlhfbook.com/
2. 自监督学习 & 半监督学习
- CSCI 601.771: Self-supervised Models(约翰霍普金斯大学的课程,就是那个因统计疫情数据而在我国出名的大学)
- Amparo Albalate, and Wolfgang Minker. Semi-Supervised and Unsupervised Machine Learning [M]. ISTE, and John Wiley & Sons, 2011.
3. 迁移学习
- 杨强, 张宇, 戴文渊, 潘嘉林 . 迁移学习[M]. 北京: 机械工业出版社, 2020.
4. 联邦学习
- 杨强, 刘洋,程勇等. 联邦学习[M]. 北京: 中国工信出版集团, 电子工业出版社, 2020.
5. 集成学习
- 周志华. 集成学习:基础与算法(第2版)[M]. 李楠, 译. 北京: 清华大学出版社, 2019.
6. 强化学习
- Richard S. Sutton, and Andrew G. Barto. Reinforcement Learning: An Introduction [M]. The MIT Press, 2018.
3. NLP自然语言处理
- CS224N
斯坦福官网:Stanford CS 224N | Natural Language Processing with Deep Learning
PPT(包含历年PPT):Index of /class/cs224n/slides
2021冬版视频YouTube官方播放列表:Stanford CS224N: Natural Language Processing with Deep Learning | Winter 2021 - YouTube
B站上给出的带中文字幕的版本:【中英字幕】CS224N Winter2021 | Lecture 1 - Intro & Word Vectors_哔哩哔哩_bilibili - CS224U
Stanford XCS224U: Natural Language Understanding I Spring 2023 - YouTube
cgpotts/cs224u: Code for Stanford CS224u - NLP中的迁移学习
(2019 NAACL) Transfer Learning in Natural Language Processing
huggingface/naacl_transfer_learning_tutorial: Repository of code for the tutorial on Transfer Learning in NLP held at NAACL 2019 in Minneapolis, MN, USA
其他参考资料:自然语言处理中的迁移学习(1) —— NAACL 2019 - 知乎 NLP领域中的迁移学习现状 - 知乎 The State of Transfer Learning in NLP(前面这篇文章的原文) Sebastian Ruder: Transfer Learning in Open-Source Natural Language Processing (spaCy IRL 2019) - YouTube - 《Linguistic Categorization》
- FudanNLP/nlp-beginner: NLP上手教程(邱锡鹏组)
- 李宏毅2021年的课:李宏毅NLP(自然语言处理)完整课程,强推!_哔哩哔哩_bilibili
1. 知识图谱
- 《知识图谱:概念与技术》
- 《知识图谱》
- CS520: Knowledge Graphs Seminar (Spring 2021) - YouTube
4. GNN图神经网络
- 《链路预测》
5. 计算机基础知识
- 《计算机程序的构造和解释》
英文版:Welcome to the SICP Web Site - Brian Harvey’s Berkeley CS 61A
- Crafting Interpreters
- Alex Aiken’s course on Lagunita
- 《程序是怎样跑起来的》
- Computer Science from the Bottom Up
- Crafting Interpreters:教你如何手写一个代码解释器
- Structure and Interpretation of Computer Programs
CS 61A Fall 2023 - Software Foundations
JavaScript版:https://jscoq.github.io/ext/sf/ - Computer Systems: A Programmer’s Perspective:也就是传说中的CSAPP
南京大学 计算机科学与技术系 计算机系统基础 课程实验 2022 - computer systems: a programmer’s perspective
- 计算机程序的构造和解释
- MIT的6.S081课程
- 《CPU设计实战》
- 《Linear and Nonlinear Programming》
学习linear and nonlinear programming这本书有什么好的建议吗? - 知乎 - A 2024 Computer Science Curriculum
1. 操作系统
- 现代操作系统
- 王道版操作系统
- 汤小丹版操作系统
- 斯托林斯版操作系统
- 《操作系统导论》
- Berkeley CS 162
- xv6: a simple, Unix-like teaching operating system
mit-pdos/xv6-riscv: Xv6 for RISC-V - Writing an OS in Rust
- rCore-Tutorial-Book-v3 3.6.0-alpha.1 文档
- Operating Systems Design and Implementation
2. Linux系统
- 《Linux命令行与shell脚本编程大全》
- huaxz1986/APUE_notes: 《UNIX环境高级编程》中文第三版笔记
3. 计算机系统组成原理与分布式系统
- 《深入理解计算机系统》
- MIT6.824分布式课程
- Berkeley CS 61C
- 《数据密集型应用系统设计》
4. 计算机网络
- 《计算机网络:自顶向下方法》
- Stanford CS 144
5. 汇编语言
- 《汇编语言》 - 王爽
6. Office办公三件套
1. Excel
- 《跟秋叶一起学秒懂Excel》
6. 科研学术与论文写作
- 《学术“咸鱼”的自救指南》
- 《读研指南:搞砸研究生生涯的57个教训》
- 《带一本书去读研:研究生关键学术技能快速入门》
- 《研究是一门艺术》
- 《学术写作原来是这样:语言、逻辑和结构的全面提升》
- 《做研究是有趣的:给学术新人的科研入门笔记》
- 《Writing in the Sciences》
- 《How to Write an Essay》
- 《Academic and Business Writing》
- pengsida/learning_research: 本人的科研经验:这个作者他自己是做3D Vision的
https://pengsida.net/files/how_to_do_research_v2.pdf - 《The Craft of Research》
- 《Academic Phrasebank》
- 《研究的方法》
- https://github.com/shengyp/doing_the_PhD
- 考研、读研到毕业论文:研究生的学术三步曲
- 研究生是如何炼成的:学术研究与论文写作导引
- 高质量读研:教你如何写论文、做科研
- 科技论文规范写作与编辑
- 科技论文的规范表达——写作与编辑
- 学术研究方法论
- 研究方法论:本科、硕士、博士生研究指南
- 读研指南:搞砸研究生生涯的57个教训
- secdr/research-method: 论文写作与资料分享
- Science Research Writing: For Non-Native Speakers of English
- 芝加哥大学论文写作指南
- 文献信息检索与论文写作
- 学术论文写作
- 《论文写作基本公式》
- 《学术期刊论文写作必修课》
- 如何成为学术论文写作高手:针对华人作者的18周技能强化训练
- 科研论文写作方法与技巧
- 学术论文写作ABC
- 会读才会写:导向论文写作的文献阅读技巧
- 文献检索与论文写作(邓富民、梁学栋版和李振华版)
- 论文写作
- 科学研究方法与学术论文写作
- 科学研究方法与学术论文写作——理论技巧案例
- 科研方法与论文写作
- 文献检索与科技论文写作入门
- 研究是一门艺术
- 如何做好文献综述
- 不发表就出局
- 科技论文成功发表的技巧:英文
- 科研论文配图设计与制作从入门到精通
- EndNote & Word文献管理与论文写作
- 研究方法、设计与分析
- How to Do Great Research | research-course
- 文献管理与信息分析_中国科学技术大学_中国大学MOOC(慕课)
7. 写作
1. 技术写作
2. 文学写作
1. 剧本写作
3. 英语写作
- 《On Writing Well》
- 《How to Say It》
8. 算法与数据结构
- 《算法设计手册》
- Steven Skiena’s lectures
- 《数据结构》严蔚敏
【公开课】数据结构(清华严蔚敏)_哔哩哔哩_bilibili - 《算法导论》
huaxz1986/cplusplus-_Implementation_Of_Introduction_to_Algorithms: 《算法导论》第三版中算法的C++实现 - Hello 算法
- 数据结构 Python语言描述
- 《数据结构与算法分析——C语言描述》
- 《算法设计与分析基础》韩军
- 《算法引论——一种创造性方法》
- 《Algorithms on Strings, Trees and Sequences》
- 《Algorithm Design Manual》
- 《Algorithms》
- 6.851 Advanced Data Structures
- 《啊哈!算法》
- 《算法图解》
- 《妙趣横生的算法(C语言实现 第2版)》
- 《趣学算法》
- 《大话数据结构》
- 《学习算法思想 修炼编程内功》
- 《算法导论》
- 《数据结构与算法 Java版》
- 《数据结构与算法:Python语言描述》
- 《学习JavaScrit数据结构与算法(第2版)》
- 《数据结构与算法分析:C语言描述(原书第2版)》
- 《数据结构与算法分析:C++描述(第3版)》
- 《剑指Offer:名企面试官精讲典型编程题(第2版)》
- 《算法谜题》
- 《程序员实用算法》
- Home | CS 61B Spring 2024
- 做题
9. 数据库
- Readings in Database Systems
- Joe Hellerstein’s Berkeley CS 186
- 《MySQL必知必会》
- 【中字】SQL进阶教程 | 史上最易懂SQL教程!10小时零基础成长SQL大师!!
- CMU 15-445/645 :: Intro to Database Systems (Spring 2024)
10. CV计算机视觉
- Stanford University CS231n: Deep Learning for Computer Vision
- 数字图像处理
- 视频处理与通信
- 新一代视频压缩编码标准——H.264/AVC
- FFmpeg
- 播放器
- vlc
- ljkplayer
- exoplayer
11. 编程
- 《编程之法:面试和算法心得》
- 《实战Nginx》
- 《Tomcat架构解析》
- 《Docker实战》
- 《Designing Data-Intensive Applications》
- 《持续演进的Cloud Native:云原生架构下微服务最佳实践》
- 《阿里云云原生架构实践》
- 《中台战略:中台建设与数字商业》
- 《Elements of Programming》
- 《Language Implementation Patterns》
- 《Writing Efficient Programs》
- 《编程珠玑》
- 《更多的编程珠玑》
- 《The Science of Programming》
- Learn to Code — For Free — Coding Courses for Busy People
1. Web前端
- Learn HTML
- Learn CSS
- JavaScript - 学习 Web 开发 | MDN
- 《JavaScript高级程序设计》
- Web API 接口参考 | MDN
- Chrome tricks | 白日做梦
- 《无界面交互》
- 《CSS新世界》
- A Philosophy of Software Design
- FrontEndGitHub/FrontEndGitHub: :octocat:GitHub最全的前端资源汇总仓库(包括前端学习、开发资源、数据结构与算法、开发工具、求职面试等)
2. Git
3. Java
- JavaGuide:这个其实综合性挺强的,是给Java程序员找工作时用的
- 《Netty实战》
- 《Netty进阶之路》
- 《Netty入门与实战:仿写微信IM即时通讯系统》
- 《netty4 核心原理》
- Introduction to Programming in Java · Computer Science
- The Java™ Tutorials
- Java代码规范:Code Conventions for the Java Programming Language: Contents
4. C
- 《C和指针》
- 《C Interfaces and Implementation》
5. C#
- C# 教程 | 菜鸟教程
- 《.net之美》
6. 设计模式
7. 大数据
- 《Redis深度历险:核心原理与应用实践》
- 《实战Redis》
- 《深入理解Kafka:核心设计与实践原理》
8. 测试
- 《Effective Software Testing》
- 《Unit Testing: Principles, Practices, and Patterns》
9. 游戏开发
- 《精通Cocos2d-x游戏开发》
- 《Cocos2d跨平台游戏开发指南》
- 《Unity 3D完全自学教程》
- 从零到应用商店发布实战合集 | 虚幻5手游开发教程【新手向 | 持续更新】_哔哩哔哩bilibili_教程
- 《平衡掌控者游戏数值经济设计》
- M_Studio-合集·《勇士传说》Unity2022版教程
12. 音频处理&时间序列分析
- Audio Signal Processing and Coding
13. 搜广推
- 深度学习推荐系统
- 互联网大厂推荐算法实战
14. 强化学习
- Sutton & Barto Book: Reinforcement Learning: An Introduction
配套课程:Teaching - David Silver - CS 285
- JiwenJ/Awesome-RL: A curated list of RL resources
15. 计算机综合(面试)
- CS-Notes 面试笔记
- 【布客】Interview 面试指南
- 荣誉中心 - Heywhale.com
- AI算法工程师手册(有一部分我已经看过了。总之整个博客都推荐阅读)
- jwasham/coding-interview-university: A complete computer science study plan to become a software engineer.
- CS自学指南
- 《编程之法 面试和算法心得》
- 《编程珠玑(第2版•修订版)》
- 《编程之美》
- jiushi506/ComputerTech: 计算机编程技术大全,java,c++, golang, python, javascript, 计算机网络,操作系统,编译原理,互联网面试等
- CS自学指南
16. 测试
- 博为峰软件测试
- 松勤软件测试
17. 演讲与口才
18. 集成性材料
- https://jyywiki.cn/Reading_List.md
- 📚各大高校课程资源汇总,在Github上大学 💡加入组织 | university 推荐丨国内多所高校课程共享
- MIT OpenCourseWare | Free Online Course Materials
19. 交叉学科-文科那边的知识
1. 法学
- 法学导论
- 法理学初阶
- 法律思维三十讲
- 洞穴奇案
- 木腿正义
- 送法下乡
- 杀死一只知更鸟
- 法的门前
- 政法笔记
- 法治及其本土资源
- 制度是如何形成的
- 法律稻草人
- 法治的细节
2. 语言学
- 语料库文体统计学方法与应用
3. 心理学
- 《问题管理家(PM+)》
4. 金融财会
1. 会计学
- 许家林.会计学原理.北京.科学出版社.2010.7.27
2. 量化
5. 管理学
1. 技术管理
- 《The Manager’s Path: A Guide for Tech Leaders Navigating Growth and Change》
- 《An Elegant Puzzle: Systems of Engineering Management》
6. 产品/运营/设计
- 《六节课玩转版式设计》
7. 乐理
- https://www.lightnote.co/:是付费课,但是这个landing page简直天下无敌
本文撰写过程中参考的资料
- 人工智能中的线性代数与矩阵论学习秘诀之著名教材
- 我的算法学习之路 – lucida:这篇作者介绍了他自己学习算法与编程、并将其应用于实践的经历,故事写得很精彩。