【数论】 —— 最大公因数与最小公倍数

最大公因数与最小公倍数

这一章内容比较少,主要讲的是最大公因数的几种求法。

最大公因数

定义

在两个数的公因数中最大的那个叫做这两个数的最大公因数。

我们一般用 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b) 来表示 a a a b b b 两数的最大公因数。

接下来,我给大家介绍 4 4 4 种求最大公因数的方法。

穷举法

顾名思义,即暴力枚举:从两个数中较小的一个开始从大到小枚举,遇到的第一个可以同时整除这两个数的数就是它们的最大公因数。

至于为什么要从较小的一个开始枚举,因为两个数的公因数只可能小于等于较小的那个数。

时间复杂度: O ( min ⁡ ( a , b ) ) O(\min(a,b)) O(min(a,b))

代码
inline int gcd(int a , int b) {
	int x = min(a , b);
	for(register int i = x;i >= 1;i --)
		if(a % i == 0 && b % i == 0)
			return i;
}

辗转相除法

定义

辗转相除法,又称欧几里得算法,是一种用来求最大公因数的算法。其算法流程主要基于这么一个式子: gcd ⁡ ( a , b ) = gcd ⁡ ( b , a   m o d   b ) \gcd(a,b)=\gcd(b,a\bmod b) gcd(a,b)=gcd(b,amodb)。当 a   m o d   b = 0 a\bmod b=0 amodb=0 时,便可以得到两数的最大公因数,即 gcd ⁡ ( b , a   m o d   b ) \gcd(b,a\bmod b) gcd(b,amodb) 中的 b b b

由这个式子,我们可以想到一种递归求最大公因数的写法:

代码
int gcd(int a , int b) {
	if(!b)
		return a;
	return gcd(b , a % b);
}

当然,也可以把这个过程改写成一个循环:

inline int gcd(int a , int b) {
	int r = a % b;
	while(r) {
		a = b;
		b = r;
		r = a % b;
	}
	return b;
}

时间复杂度均为: O ( log ⁡ max ⁡ ( a , b ) ) O(\log \max(a,b)) O(logmax(a,b))

辗转相除法的证明

下面给出证明:

d d d a a a b b b 的任意一个公因数且 a > b a > b a>b

则必有: a = k b + r a=kb+r a=kb+r

移项得: r = a − k b r=a-kb r=akb

两边同时除以 d d d 得: r d = a d − k b d \frac{r}{d}=\frac{a}{d}-\frac{kb}{d} dr=dadkb

因为 d d d a a a b b b 的公因数,所以 d ∣ a d\mid a da 并且 d ∣ b d\mid b db。由此得到: d ∣ r d\mid r dr

r = a   m o d   b r=a\bmod b r=amodb

所以, d d d 既是 a a a b b b 的公因数,也是 b b b a   m o d   b a\bmod b amodb 的公因数。

现在我们证出 ( a , b ) (a,b) (a,b) ( b , a   m o d   b ) (b,a\bmod b) (b,amodb) 的公因数相等,而由 d d d 的任意性得 d d d 可为 a a a b b b 的最大公因数。故得证。

更相减损法

定义

更相减损法,即把两数不断相减,直到两数相等。其实主要思想和辗转相除法类似。

具体算法流程是:

试求 a a a b b b 两数的最大公因数。

  1. 2 ∣ a 2\mid a 2a 2 ∣ b 2\mid b 2b,则先将两数所含的 2 2 2 给除掉。

  2. 接着,我们不断用大数减小数,直到两数相等。此时相等的两数乘上约掉的 2 2 2 即为原本两数的最大公因数。

用公式表达就是:

  • gcd ⁡ ( 2 a , 2 b ) = 2 gcd ⁡ ( a , b ) \gcd(2a,2b)=2\gcd(a,b) gcd(2a,2b)=2gcd(a,b)
  • a ≥ b a\ge b ab gcd ⁡ ( a , b ) = gcd ⁡ ( a , a − b ) = gcd ⁡ ( b , a − b ) \gcd(a,b)=\gcd(a,a-b)=\gcd(b,a-b) gcd(a,b)=gcd(a,ab)=gcd(b,ab)

我们发现,其实第一步可以省略,直接执行第二步即可。

时间复杂度与辗转相除法一样: O ( log ⁡ max ⁡ ( a , b ) ) O(\log \max(a,b)) O(logmax(a,b))

代码

代码实现比较简单:

inline int gcd(int a , int b) {
	while(a != b) {
		if(a > b)
			a = a - b;
		else
			b = b - a;
	}
	return a;
}
更相减损法的证明

第一个公式十分好证:

因为 2 a 2a 2a 2 b 2b 2b 均为 2 2 2 的倍数,所以 2 2 2 必是 2 a 2a 2a 2 b 2b 2b 的一个公因数,所以最大公因数中包含 2 2 2。故可以将其提出。

接下来我们来证明第二个公式:

d = gcd ⁡ ( a , b ) d=\gcd(a,b) d=gcd(a,b)

a a a b b b 必能表示成: a = k 1 d a=k_1d a=k1d b = k 2 d b=k_2d b=k2d

a > b a > b a>b,所以 a − b = d ( k 1 − k 1 ) a-b=d(k1-k1) ab=d(k1k1),可以得到 d ∣ ( a − b ) d\mid (a-b) d(ab)

由此可得: gcd ⁡ ( a , b ) = gcd ⁡ ( a , a − b ) = gcd ⁡ ( b , a − b ) \gcd(a,b)=\gcd(a,a-b)=\gcd(b,a-b) gcd(a,b)=gcd(a,ab)=gcd(b,ab)
故得证。

二进制算法

对于处理数位较少的数的最大公因数,使用辗转相除法就可以了,但当数位达到上百位时便需要用到高精度。此时,辗转相除法就不那么适用了。对于这类问题,我们可以用支持高精度的二进制算法。

算法流程如下:

a = b a=b a=b,则 gcd ⁡ ( a , b ) = a \gcd(a,b)=a gcd(a,b)=a

否则,分情况讨论:

  1. a a a b b b 均为偶数,则: gcd ⁡ ( a , b ) = 2 × gcd ⁡ ( a ÷ 2 , b ÷ 2 ) \gcd(a,b)=2\times\gcd(a\div 2,b\div 2) gcd(a,b)=2×gcd(a÷2,b÷2)

  2. a a a 为偶数, b b b 为奇数,则 gcd ⁡ ( a , b ) = gcd ⁡ ( a ÷ 2 , b ) \gcd(a,b)=\gcd(a\div 2,b) gcd(a,b)=gcd(a÷2,b)

  3. a a a b b b 均为奇数,则 gcd ⁡ ( a , b ) = gcd ⁡ ( a − b , b ) \gcd(a,b)=\gcd(a-b,b) gcd(a,b)=gcd(ab,b)

最终答案即是第一个操作中被约掉的 2 2 2 乘操作 3 3 3 的结果。

其实二进制算法和更相减损法十分相似。这里就不给证明了。

代码

这里给出一个完整的高精度最大公因数的代码:

#include<iostream>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<stack>
#include<queue>
#define int long long
using namespace std;
string s1 , s2;
int a[3005] , b[3005] , c[3005];
int len1 , len2;
 
inline void div1(int a[]) {
    int r = 0;
    for(register int i = len1;i >= 1;i --) {
        a[i] = a[i] + r * 10;
        r = a[i] % 2;
        a[i] /= 2;
    }
    while(!a[len1] && len1 > 1)
        len1 --;
    return;
}
 
inline void div2(int b[]) {
    int r = 0;
    for(register int i = len2;i >= 1;i --) {
        b[i] = b[i] + r * 10;
        r = b[i] % 2;
        b[i] /= 2;
    }
    while(!b[len2] && len2 > 1)
        len2 --;
    return;
}
 
inline bool equal(int a[] , int b[]) {
    if(len1 != len2)
        return false;
    for(register int i = 1;i <= len1;i ++)
        if(a[i] != b[i])
            return false;
    return true;
}
 
inline void poww(int a[] , int x) {
    for(register int i = 1;i <= 3000;i ++)
        a[i] *= x;
    for(register int i = 1;i <= 3000;i ++) {
        a[i + 1] += a[i] / 10;
        a[i] %= 10;
    }
    len1 = 3000;
    while(!a[len1] && len1 > 1)
        len1 --;
    for(register int i = len1;i >= 1;i --)
        cout << a[i];
    return;
}
 
inline bool bigger(int a[] , int b[]) {
    if(len2 < len1)
        return false;
    if(len2 > len1)
        return true; 
    for(register int i = len1;i >= 1;i --)
        if(b[i] > a[i])
            return true;
        else if(a[i] > b[i])
            return false;
    return false;
}
 
inline void change(int a[] , int b[]) {
    for(register int i = 1;i <= len1;i ++)
        c[i] = a[i];
    for(register int i = 1;i <= len2;i ++)
        a[i] = b[i];
    for(register int i = 1;i <= len1;i ++)
        b[i] = c[i];
    int k = len1;
    len1 = len2;
    len2 = k;
    for(register int i = 3000;i > len2;i --)
        b[i] = 0;
    for(register int i = 3000;i > len1;i --)
        a[i] = 0;
    return;
}
 
inline void mi(int a[] , int b[]) {
    for(register int i = 1;i <= len1;i ++)
        a[i] = a[i] - b[i];
    for(register int i = 1;i <= len1;i ++)
        if(a[i] < 0) {
            a[i] += 10;
            a[i + 1] --;
        }
    while(!a[len1] && len1 > 1)
        len1 --;
    return;
}
 
inline int ksm(int x) {
    int result = 1 , base = 2;
    while(x > 0) {
        if(x & 1)
            result = result * base;
        x >>= 1;
        base = (base * base);
    }
    return result;
}
//精髓部分
inline void gcd(int a[] , int b[]) {
    int i , j;
    for(i = 0;a[1] & 0;i ++)
        div1(a);
    for(j = 0;b[1] & 0;j ++)
        div2(b);
    if(i > j)
        i = j;
    int k = ksm(i);
    while(true) {
        if(equal(a , b)) {
            poww(a , k);
            exit(0);
        }
        if(bigger(a , b))
            change(a , b);
        mi(a , b);
        while(a[1] & 0)
            div1(a);
    }
}
 
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    cin >> s1 >> s2;
    len1 = s1.size();
    len2 = s2.size();
    for(register int i = 0;i < len1;i ++)
        a[len1 - i] = s1[i] - '0';
    for(register int i = 0;i < len2;i ++)
        b[len2 - i] = s2[i] - '0';
    gcd(a , b);
    return 0;
}

c++ 自带函数

在这么多求最大公因数的算法中,应用的比较的多的就只有辗转相除法。但其实 c++ 内部也有自带的求最大公因数的函数,即:__gcd()函数,用法和手写的一样。若要求 a a a b b b 的最大公因数,代码应为:cout << __gcd(a,b)

最小公倍数

定义

两数的公倍数中最小的那个数被称作这两个数的最小公倍数。

我们一般用 L C M ( a , b ) LCM(a,b) LCM(a,b) 表示两个数的最小公倍数。

最小公倍数的求法

易得: L C M ( a , b ) = a ÷ gcd ⁡ ( a , b ) × b LCM(a,b)=a\div \gcd(a,b)\times b LCM(a,b)=a÷gcd(a,b)×b

这个公式十分容易得到,这里就不给推导过程了。

个人建议先除以 gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b) 再乘 b b b,以防止 a a a b b b 过大,然后相乘溢出。

代码
int gcd(int a , int b) {
	if(!b)
		return a;
	return gcd(b , a % b);
}

inline int lcm(int a , int b) {
	return a / gcd(a , b) * b;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值