最大公因数与最小公倍数
这一章内容比较少,主要讲的是最大公因数的几种求法。
最大公因数
定义
在两个数的公因数中最大的那个叫做这两个数的最大公因数。
我们一般用 gcd ( a , b ) \gcd(a,b) gcd(a,b) 来表示 a a a, b b b 两数的最大公因数。
接下来,我给大家介绍 4 4 4 种求最大公因数的方法。
穷举法
顾名思义,即暴力枚举:从两个数中较小的一个开始从大到小枚举,遇到的第一个可以同时整除这两个数的数就是它们的最大公因数。
至于为什么要从较小的一个开始枚举,因为两个数的公因数只可能小于等于较小的那个数。
时间复杂度: O ( min ( a , b ) ) O(\min(a,b)) O(min(a,b))。
代码
inline int gcd(int a , int b) {
int x = min(a , b);
for(register int i = x;i >= 1;i --)
if(a % i == 0 && b % i == 0)
return i;
}
辗转相除法
定义
辗转相除法,又称欧几里得算法,是一种用来求最大公因数的算法。其算法流程主要基于这么一个式子: gcd ( a , b ) = gcd ( b , a m o d b ) \gcd(a,b)=\gcd(b,a\bmod b) gcd(a,b)=gcd(b,amodb)。当 a m o d b = 0 a\bmod b=0 amodb=0 时,便可以得到两数的最大公因数,即 gcd ( b , a m o d b ) \gcd(b,a\bmod b) gcd(b,amodb) 中的 b b b。
由这个式子,我们可以想到一种递归求最大公因数的写法:
代码
int gcd(int a , int b) {
if(!b)
return a;
return gcd(b , a % b);
}
当然,也可以把这个过程改写成一个循环:
inline int gcd(int a , int b) {
int r = a % b;
while(r) {
a = b;
b = r;
r = a % b;
}
return b;
}
时间复杂度均为: O ( log max ( a , b ) ) O(\log \max(a,b)) O(logmax(a,b))。
辗转相除法的证明
下面给出证明:
设 d d d 是 a a a, b b b 的任意一个公因数且 a > b a > b a>b。
则必有: a = k b + r a=kb+r a=kb+r;
移项得: r = a − k b r=a-kb r=a−kb;
两边同时除以 d d d 得: r d = a d − k b d \frac{r}{d}=\frac{a}{d}-\frac{kb}{d} dr=da−dkb;
因为 d d d 是 a a a 与 b b b 的公因数,所以 d ∣ a d\mid a d∣a 并且 d ∣ b d\mid b d∣b。由此得到: d ∣ r d\mid r d∣r。
而 r = a m o d b r=a\bmod b r=amodb。
所以, d d d 既是 a a a, b b b 的公因数,也是 b b b, a m o d b a\bmod b amodb 的公因数。
现在我们证出 ( a , b ) (a,b) (a,b) 与 ( b , a m o d b ) (b,a\bmod b) (b,amodb) 的公因数相等,而由 d d d 的任意性得 d d d 可为 a a a 与 b b b 的最大公因数。故得证。
更相减损法
定义
更相减损法,即把两数不断相减,直到两数相等。其实主要思想和辗转相除法类似。
具体算法流程是:
试求 a a a, b b b 两数的最大公因数。
-
若 2 ∣ a 2\mid a 2∣a 且 2 ∣ b 2\mid b 2∣b,则先将两数所含的 2 2 2 给除掉。
-
接着,我们不断用大数减小数,直到两数相等。此时相等的两数乘上约掉的 2 2 2 即为原本两数的最大公因数。
用公式表达就是:
- gcd ( 2 a , 2 b ) = 2 gcd ( a , b ) \gcd(2a,2b)=2\gcd(a,b) gcd(2a,2b)=2gcd(a,b)。
- a ≥ b a\ge b a≥b, gcd ( a , b ) = gcd ( a , a − b ) = gcd ( b , a − b ) \gcd(a,b)=\gcd(a,a-b)=\gcd(b,a-b) gcd(a,b)=gcd(a,a−b)=gcd(b,a−b)。
我们发现,其实第一步可以省略,直接执行第二步即可。
时间复杂度与辗转相除法一样: O ( log max ( a , b ) ) O(\log \max(a,b)) O(logmax(a,b))。
代码
代码实现比较简单:
inline int gcd(int a , int b) {
while(a != b) {
if(a > b)
a = a - b;
else
b = b - a;
}
return a;
}
更相减损法的证明
第一个公式十分好证:
因为 2 a 2a 2a 与 2 b 2b 2b 均为 2 2 2 的倍数,所以 2 2 2 必是 2 a 2a 2a 与 2 b 2b 2b 的一个公因数,所以最大公因数中包含 2 2 2。故可以将其提出。
接下来我们来证明第二个公式:
设 d = gcd ( a , b ) d=\gcd(a,b) d=gcd(a,b)。
则 a a a 与 b b b 必能表示成: a = k 1 d a=k_1d a=k1d, b = k 2 d b=k_2d b=k2d。
令 a > b a > b a>b,所以 a − b = d ( k 1 − k 1 ) a-b=d(k1-k1) a−b=d(k1−k1),可以得到 d ∣ ( a − b ) d\mid (a-b) d∣(a−b)。
由此可得:
gcd
(
a
,
b
)
=
gcd
(
a
,
a
−
b
)
=
gcd
(
b
,
a
−
b
)
\gcd(a,b)=\gcd(a,a-b)=\gcd(b,a-b)
gcd(a,b)=gcd(a,a−b)=gcd(b,a−b)。
故得证。
二进制算法
对于处理数位较少的数的最大公因数,使用辗转相除法就可以了,但当数位达到上百位时便需要用到高精度。此时,辗转相除法就不那么适用了。对于这类问题,我们可以用支持高精度的二进制算法。
算法流程如下:
若 a = b a=b a=b,则 gcd ( a , b ) = a \gcd(a,b)=a gcd(a,b)=a;
否则,分情况讨论:
-
若 a a a 和 b b b 均为偶数,则: gcd ( a , b ) = 2 × gcd ( a ÷ 2 , b ÷ 2 ) \gcd(a,b)=2\times\gcd(a\div 2,b\div 2) gcd(a,b)=2×gcd(a÷2,b÷2)。
-
若 a a a 为偶数, b b b 为奇数,则 gcd ( a , b ) = gcd ( a ÷ 2 , b ) \gcd(a,b)=\gcd(a\div 2,b) gcd(a,b)=gcd(a÷2,b)。
-
若 a a a 与 b b b 均为奇数,则 gcd ( a , b ) = gcd ( a − b , b ) \gcd(a,b)=\gcd(a-b,b) gcd(a,b)=gcd(a−b,b)。
最终答案即是第一个操作中被约掉的 2 2 2 乘操作 3 3 3 的结果。
其实二进制算法和更相减损法十分相似。这里就不给证明了。
代码
这里给出一个完整的高精度最大公因数的代码:
#include<iostream>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<stack>
#include<queue>
#define int long long
using namespace std;
string s1 , s2;
int a[3005] , b[3005] , c[3005];
int len1 , len2;
inline void div1(int a[]) {
int r = 0;
for(register int i = len1;i >= 1;i --) {
a[i] = a[i] + r * 10;
r = a[i] % 2;
a[i] /= 2;
}
while(!a[len1] && len1 > 1)
len1 --;
return;
}
inline void div2(int b[]) {
int r = 0;
for(register int i = len2;i >= 1;i --) {
b[i] = b[i] + r * 10;
r = b[i] % 2;
b[i] /= 2;
}
while(!b[len2] && len2 > 1)
len2 --;
return;
}
inline bool equal(int a[] , int b[]) {
if(len1 != len2)
return false;
for(register int i = 1;i <= len1;i ++)
if(a[i] != b[i])
return false;
return true;
}
inline void poww(int a[] , int x) {
for(register int i = 1;i <= 3000;i ++)
a[i] *= x;
for(register int i = 1;i <= 3000;i ++) {
a[i + 1] += a[i] / 10;
a[i] %= 10;
}
len1 = 3000;
while(!a[len1] && len1 > 1)
len1 --;
for(register int i = len1;i >= 1;i --)
cout << a[i];
return;
}
inline bool bigger(int a[] , int b[]) {
if(len2 < len1)
return false;
if(len2 > len1)
return true;
for(register int i = len1;i >= 1;i --)
if(b[i] > a[i])
return true;
else if(a[i] > b[i])
return false;
return false;
}
inline void change(int a[] , int b[]) {
for(register int i = 1;i <= len1;i ++)
c[i] = a[i];
for(register int i = 1;i <= len2;i ++)
a[i] = b[i];
for(register int i = 1;i <= len1;i ++)
b[i] = c[i];
int k = len1;
len1 = len2;
len2 = k;
for(register int i = 3000;i > len2;i --)
b[i] = 0;
for(register int i = 3000;i > len1;i --)
a[i] = 0;
return;
}
inline void mi(int a[] , int b[]) {
for(register int i = 1;i <= len1;i ++)
a[i] = a[i] - b[i];
for(register int i = 1;i <= len1;i ++)
if(a[i] < 0) {
a[i] += 10;
a[i + 1] --;
}
while(!a[len1] && len1 > 1)
len1 --;
return;
}
inline int ksm(int x) {
int result = 1 , base = 2;
while(x > 0) {
if(x & 1)
result = result * base;
x >>= 1;
base = (base * base);
}
return result;
}
//精髓部分
inline void gcd(int a[] , int b[]) {
int i , j;
for(i = 0;a[1] & 0;i ++)
div1(a);
for(j = 0;b[1] & 0;j ++)
div2(b);
if(i > j)
i = j;
int k = ksm(i);
while(true) {
if(equal(a , b)) {
poww(a , k);
exit(0);
}
if(bigger(a , b))
change(a , b);
mi(a , b);
while(a[1] & 0)
div1(a);
}
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> s1 >> s2;
len1 = s1.size();
len2 = s2.size();
for(register int i = 0;i < len1;i ++)
a[len1 - i] = s1[i] - '0';
for(register int i = 0;i < len2;i ++)
b[len2 - i] = s2[i] - '0';
gcd(a , b);
return 0;
}
c++ 自带函数
在这么多求最大公因数的算法中,应用的比较的多的就只有辗转相除法。但其实 c++ 内部也有自带的求最大公因数的函数,即:__gcd()
函数,用法和手写的一样。若要求
a
a
a 与
b
b
b 的最大公因数,代码应为:cout << __gcd(a,b)
。
最小公倍数
定义
两数的公倍数中最小的那个数被称作这两个数的最小公倍数。
我们一般用 L C M ( a , b ) LCM(a,b) LCM(a,b) 表示两个数的最小公倍数。
最小公倍数的求法
易得: L C M ( a , b ) = a ÷ gcd ( a , b ) × b LCM(a,b)=a\div \gcd(a,b)\times b LCM(a,b)=a÷gcd(a,b)×b。
这个公式十分容易得到,这里就不给推导过程了。
个人建议先除以 gcd ( a , b ) \gcd(a,b) gcd(a,b) 再乘 b b b,以防止 a a a 和 b b b 过大,然后相乘溢出。
代码
int gcd(int a , int b) {
if(!b)
return a;
return gcd(b , a % b);
}
inline int lcm(int a , int b) {
return a / gcd(a , b) * b;
}