#1015 : KMP算法
描述
小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进。
这一天,他们遇到了一只河蟹,于是河蟹就向小Hi和小Ho提出了那个经典的问题:“小Hi和小Ho,你们能不能够判断一段文字(原串)里面是不是存在那么一些……特殊……的文字(模式串)?”
小Hi和小Ho仔细思考了一下,觉得只能想到很简单的做法,但是又觉得既然河蟹先生这么说了,就肯定不会这么容易的让他们回答了,于是他们只能说道:“抱歉,河蟹先生,我们只能想到时间复杂度为(文本长度 * 特殊文字总长度)的方法,即对于每个模式串分开判断,然后依次枚举起始位置并检查是否能够匹配,但是这不是您想要的方法是吧?”
河蟹点了点头,说道:”看来你们的水平还有待提高,这样吧,如果我说只有一个特殊文字,你能不能做到呢?“
小Ho这时候还有点晕晕乎乎的,但是小Hi很快开口道:”我知道!这就是一个很经典的模式匹配问题!可以使用KMP算法进行求解!“
河蟹满意的点了点头,对小Hi说道:”既然你知道就好办了,你去把小Ho教会,下周我有重要的任务交给你们!“
”保证完成任务!”小Hi点头道。
输入
第一行一个整数N,表示测试数据组数。
接下来的N*2行,每两行表示一个测试数据。在每一个测试数据中,第一行为模式串,由不超过10^4个大写字母组成,第二行为原串,由不超过10^6个大写字母组成。
其中N<=20
输出
对于每一个测试数据,按照它们在输入中出现的顺序输出一行Ans,表示模式串在原串中出现的次数。
5 HA HAHAHA WQN WQN ADA ADADADA BABABB BABABABABABABABABB DAD ADDAADAADDAAADAAD样例输出
3 1 3 1 0
#include <bits/stdc++.h> using namespace std; typedef long long ll ; typedef double dl ; #define INF 0x7f const int maxn =1e6+5; #define f(i,l,r) for(int i=l;i<=r;++i) #define g(i,l,r) for(int i=l;i>=r;--i) char str[maxn],str2[maxn]; int nxt[maxn]; void getnxt() { memset(nxt,-1,sizeof(nxt)); int j=0,k=-1; int len1= strlen(str); while(j<len1) { if(k==-1 || str[j]==str[k]) nxt[++j]=++k; else k=nxt[k]; } } int kmp() { int ans=0; getnxt(); // f(i,0,strlen(str)) // cout<<nxt[i]<<" "; // cout<<endl; int len2= strlen(str2); int len1= strlen(str); int i,j; i = j = 0; while(i < len2) { if(j == -1 || str2[i] == str[j]) ++i, ++j; else j = nxt[j]; if(j == len1) ans++; } return ans; } int main() { freopen("in","r",stdin); int n; cin>>n; while(n--) { cin>>str>>str2; cout<<kmp()<<endl; } return 0; }