作者:PrimiHub-Kevin
ROC 曲线是一种坐标图式的分析工具,是由二战中的电子和雷达工程师发明的,发明之初是用来侦测敌军飞机、船舰,后来被应用于医学、生物学、犯罪心理学。
如今,ROC 曲线已经被广泛应用于机器学习领域的模型评估,说到这里就不得不提到 Tom Fawcett 大佬,他一直在致力于推广 ROC 在机器学习领域的应用,他发布的论文《An introduction to ROC analysis》更是被奉为 ROC 的经典之作(引用 2.2w 次),知名机器学习库 scikit-learn 中的 ROC 算法就是参考此论文实现,可见其影响力!
不知道大多数人是否和我一样,对于 ROC 曲线的理解只停留在调用 scikit-learn 库的函数,对于它的背后原理和公式所知甚少。
前几天我重读了《An introduction to ROC analysis》终于将 ROC 曲线彻底搞清楚了,独乐乐不如众乐乐!如果你也对 ROC 的算法及实现感兴趣,不妨花些时间看完全文,相信你一定会有所收获!
一、什么是 ROC 曲线
下图中的蓝色曲线就是 ROC 曲线,它常被用来评价二值分类器的优劣,即评估模型预测的准确度。
二值分类器,就是字面意思它会将数据分成两个类别(正/负样本)。例如:预测银行用户是否会违约、内容分为违规和不违规,以及广告过滤、图片分类等场景。篇幅关系这里不做多分类 ROC 的讲解。
坐标系中纵轴为 TPR(真阳率/命中率/召回率)最大值为 1,横轴为 FPR(假阳率/误判率)最大值为 1,虚线为基准线(最低标准),蓝色的曲线就是 ROC 曲线。其中 ROC 曲线距离基准线越远,则说明该模型的预测效果越好。(TPR: True positive rate; FPR: False positive rate)
- ROC 曲线接近左上角:模型预测准确率很高
- ROC 曲线略高于基准线:模型预测准确率一般
- ROC 低于基准线:模型未达到最低标准,无法使用
二、背景知识
考虑一个二分类模型, 负样本(Negative) 为 0,正样本(Positive) 为 1。即:
- 标签 y y y 的取值为 0 或 1。
- 模型预测的标签为 y ^ \hat{y} y^,取值也是 0 或 1。
因此,将 y y y 与 y ^ \hat{y} y^ 两两组合就会得到 4 种可能性,分别称为:
2.1 公式
ROC 曲线的横坐标为 FPR(False Positive Rate),纵坐标为 TPR(True Positive Rate)。FPR 统计了所有负样本中 预测错误(FP) 的比例,TPR 统计了所有正样本中 预测正确(TP) 的比例,其计算公式如下,其中 # 表示统计个数,例如 #N 表示负样本的个数,#P 表示正样本的个数
FPR = # FP # N \text{FPR}=\frac{\#\text{FP}}{\#\text{N}} FPR=#N#FP, TPR = # TP # P \text{TPR}=\frac{\#\text{TP}}{\#\text{P}} TPR=#P#TP