Python——百度识图-相似图片爬虫下载解决方案

# -*- coding:utf-8 _*-
import json
import os
import re
import cv2
import requests


from urllib.parse import urlparse, parse_qs
import numpy as np
data = {
    'image':open(r"C:\Users\Lenovo\Desktop/2.jpg",'rb')
}
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36'
}
r = requests.post('https://graph.baidu.com/upload?tn=pc&from=pc&image_source=PC_UPLOAD_IMAGE_MOVE&range={%22page_from%22:%20%22shituIndex%22}&extUiData%5bisLogoShow%5d=1',files=data,headers = headers).text
url = json.loads(r)["data"]["url"]
o = urlparse(url)
q = parse_qs(o.query, True)
sign = q['sign'][0]
r1 = requests.get(url,headers = headers).text
r0 = requests.get("https://graph.baidu.com/ajax/pcsimi?sign={}".format(sign)).text
l = json.loads(r0)["data"]["list"]
 
for one in l:
    img_url = one["thumbUrl"]
    try:
        response = requests.get(img_url, timeout=1)
    except Exception as e:
        print("ERROR: download img timeout.")
 
    try:
        # imgDataNp = np.fromstring(response.content, dtype='uint8')
        imgDataNp = np.frombuffer(response.content, dtype='uint8')
        img = cv2.imdecode(imgDataNp, cv2.IMREAD_UNCHANGED)
 
        img_name = img_url.split('/')[-1]
        print(img_name)
        save_path = os.path.join(os.getcwd(), img_name)
        cv2.imwrite(save_path, img)
    except Exception as e:
        print(e)
        print("ERROR: download img corruption.")

### 如何找到文章内图片的来源 要定位一篇文章中使用的图片的具体出处,可以采用多种方法和技术手段来实现这一目标。以下是几种常见的解决方案: #### 使用以图搜图工具 通过使用专门设计用于识别和追踪图片出处的搜索引擎或工具,能够有效查找出图片的原始来源[^2]。这些工具有助于分析一张图片在网络上的分布情况以及其最早出现的位置。 对于国际范围内的查询需求来说,Google Images 和 TinEye 是两个非常强大的选项;它们支持上传本地文件或者直接输入URL地址来进行反向图像搜索操作。特别是TinEye以其独特的算法著称,在处理高度修改过的版本时表现尤为突出。 在国内环境下,则可以选择百度识图、360快照等功能相似的服务平台完成相应任务。尽管相较于国外同类产品可能存在一定差距,但对于日常生活中遇到的一些简单场景——比如寻找明星照片原版、动漫角色设定稿等——依然具备足够的实用价值。 #### 自动化脚本辅助提取 如果面对的是批量性的需求(例如整个网站上所有嵌入式资源),那么编写一段简单的爬虫程序配合OCR文字识别技术将是更为高效的选择之一。利用Python语言结合第三方库requests获取网页源码后解析其中img标签属性href指向链接即可得到目标素材位置信息列表[^1]。 另外值得注意的一点在于某些特殊情况下可能还需要额外考虑防盗链机制的影响因素。此时可以通过设置合理的headers参数模拟真实用户的访问行为规避此类限制条件影响正常抓取流程[^3]。 ```python import requests from bs4 import BeautifulSoup url = 'your_target_webpage_url' response = requests.get(url, headers={'User-Agent': 'Mozilla/5.0'}) soup = BeautifulSoup(response.text, 'html.parser') images = soup.find_all('img') for img in images: src = img['src'] print(src) ``` 上述代码片段展示了基本原理框架结构,实际应用过程中还需根据具体情况调整细节部分逻辑内容。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值