第九章(集合)

1,集合中的元素是无序的;

2,用来保存独一无二的元素,比如一段文本中用到的单词,先检索有没有在数组中出现再确定是否往数组中添加。

			function Set(){
				this.dataStore=[];//数组
				this.add=add;//增加
				this.remove=remove;//删除
//				this.contains=contains;
				this.size=size;//大小
				this.union=union;//并集
				this.intersect=intersect;//交集
				this.subset=subset;//子集
				this.difference=difference;//补集
				this.show=show;//显示集合
				this.contanins=contanins;
			}
			function add(data){
				if(this.dataStore.indexOf(data)>=0){
					return false;
				}
				else{
					this.dataStore.push(data);
					return true;
				}
			}
			function remove(data){
				var pos=this.dataStore.indexOf(data);
				if(pos>-1){
					this.dataStore.splice(pos,1);
					return true;
				}
				else{
					return false;
				}
			}
			function show(){
				return this.dataStore;
			}
			function contanins(data){
				if(this.dataStore.indexOf(data)>-1){
					return true;
				}
				else{
					return false;
				}
			}
			//并集
			function union(set){
				var tempSet= new Set();
				for(var i=0;i<this.dataStore.length;++i){
					tempSet.add(this.dataStore[i]);
				}
				for(var i=0;i<set.dataStore.length;++i){
					if(!tempSet.contanins(set.dataStore[i])){
						tempSet.dataStore.push(set.dataStore[i]);
					}
				}
				return tempSet;
			}
			//交集
			function intersect(set){
				var tempSet=new Set();
				for(var i=0;i<this.dataStore.length;i++){
					if(set.contanins(this.dataStore[i])){
						tempSet.add(this.dataStore[i]);
					}
				}
				return tempSet;
			}
			//子集
			function subset(set){
				if(this.size()>set.size()){
					return false;
				}
				else{
					for(var member in this.dataStore){
						if(!set.contains(member)){
							return false;
						}
					}
					return true;
				}
			}
			//大小
			function size(){
				return this.dataStore.length;
			}
			//补集
			function difference(set){
				var tempSet=new Set();
				for(var i=0;i<this.dataStore.length;++i){
					if(!set.contanins(this.dataStore[i])){
						tempSet.add(this.dataStore[i]);
					}
				}
				return tempSet;
			}
			
			//主程序
			var seta=new Set();
			seta.add("zhangsan");
			seta.add("lisi");
			seta.add("wangwu");
			seta.add("maliu");
			
			var setb=new Set();
			setb.add("maliu");
			setb.add("qiqi");
			setb.add("basi");
			
			console.log("seta:"+seta.show());
			console.log("setb:"+setb.show());
			
			console.log("seta&setb:"+seta.union(setb).show());
			console.log("seta与setb的交集:"+seta.intersect(setb).show());
			console.log("seta是setb的子集吗?:"+seta.subset(setb));
			console.log("seta在setb的补集:"+seta.difference(setb).show());


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值