Description:
Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
- Only one letter can be changed at a time.
- Each transformed word must exist in the word list. Note that beginWord is not a transformed word.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
- You may assume no duplicates in the word list.
- You may assume beginWord and endWord are non-empty and are not the same.
Example 1:
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"] Output: 5 Explanation: As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog", return its length 5.
Example 2:
Input: beginWord = "hit" endWord = "cog" wordList = ["hot","dot","dog","lot","log"] Output: 0 Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.
分析:
大概意思就是给定两个长度相同的单词,找到一个方法,让第一个单词变化到第二个单词,每次只能变化一个字母,而且中间出现的都必须是字典里的单词,求这个转换次数最少的方法要用经过多少个单词。
思路就是先把起点加到队列中, 然后每次将字典中与队首距离为1的字符串加进队列, 直到最后出队列的是终点字符串
代码如下:
public class Solution {
public static int ladderLength(String beginWord, String endWord, List<String> wordList) {
Queue<String> queue = new LinkedList<>();
queue.offer(beginWord);
HashMap<String, Integer> map = new HashMap<>();
map.put(beginWord, 1);
if (wordList.contains(beginWord)){
wordList.remove(beginWord);
}
while (!queue.isEmpty() && wordList.size() > 0){
String first = queue.poll();
StringBuffer buffer;
int leve = map.get(first);
for (int i = 0; i < first.length(); i++){
buffer = new StringBuffer(first);
for (char c = 'a' ; c <= 'z'; c++){
buffer.setCharAt(i, c);
String tmp = buffer.toString();
if (tmp.equals(first)){
continue;
}
if (tmp.equals(endWord)){
return leve + 1;
}
if (wordList.contains(tmp)){
queue.offer(tmp);
map.put(tmp, leve+1);
wordList.remove(tmp);
}
}
}
}
return 0;
}
}