图的概念习题

题目:n个顶点的连通图用邻接距阵表示时,该矩阵至少有( )个非零元素。

 

解答:

这个问题是关于图论的基本概念。一个连通图是一个无向图,其中任意两个顶点之间都有一条路径相连。一个邻接矩阵是一个二维数组,其中每个元素表示两个顶点之间是否有边相连。如果有边,则元素为1,否则为0。

那么,n个顶点的连通图用邻接矩阵表示时,该矩阵至少有多少个非零元素呢?我们可以从两个方面考虑:

首先,由于连通图至少要有n-1条边才能保证所有顶点相连,所以邻接矩阵中至少有n-1个元素为1。

其次,由于邻接矩阵是一个对称矩阵,即A[i][j] = A[j][i],所以每条边在矩阵中会被存储两次,即在上三角和下三角各一次。所以邻接矩阵中至少有2(n-1)个元素为1。

综上所述,n个顶点的连通图用邻接矩阵表示时,该矩阵至少有2(n-1)个非零元素。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值