题目:n个顶点的连通图用邻接距阵表示时,该矩阵至少有( )个非零元素。
解答:
这个问题是关于图论的基本概念。一个连通图是一个无向图,其中任意两个顶点之间都有一条路径相连。一个邻接矩阵是一个二维数组,其中每个元素表示两个顶点之间是否有边相连。如果有边,则元素为1,否则为0。
那么,n个顶点的连通图用邻接矩阵表示时,该矩阵至少有多少个非零元素呢?我们可以从两个方面考虑:
首先,由于连通图至少要有n-1条边才能保证所有顶点相连,所以邻接矩阵中至少有n-1个元素为1。
其次,由于邻接矩阵是一个对称矩阵,即A[i][j] = A[j][i],所以每条边在矩阵中会被存储两次,即在上三角和下三角各一次。所以邻接矩阵中至少有2(n-1)个元素为1。
综上所述,n个顶点的连通图用邻接矩阵表示时,该矩阵至少有2(n-1)个非零元素。