Leetcode2376. 统计特殊整数

Every day a Leetcode

题目来源:2376. 统计特殊整数

解法1:数位 DP

题解:数位 DP 通用模板,附题单(Python/Java/C++/Go)

代码:

/*
 * @lc app=leetcode.cn id=2376 lang=cpp
 *
 * [2376] 统计特殊整数
 */

// @lc code=start
class Solution
{
public:
    int countSpecialNumbers(int n)
    {
        string s = to_string(n);
        int len = s.length(), memo[len][1 << 10];
        memset(memo, -1, sizeof(memo)); // -1 表示没有计算过

        function<int(int, int, bool, bool)> dfs;
        // 返回从 i 开始填数字,前面填的数字集合是 mask,能构造出的特殊整数的数目
        // is_limit 表示前面填的数字是否都是 n 对应位上的,
        // 如果为 true,那么当前位至多为 s[i],否则至多为 9
        // is_num 表示前面是否填了数字(是否跳过),
        // 如果为 true,那么当前位可以从 0 开始,否则当前位可以跳过,或者从 1 开始填数字
        dfs = [&](int i, int mask, bool is_limit, bool is_num) -> int
        {
            if (i == len)
            {
                // 找到了一个合法数字
                return is_num;
            }
            if (!is_limit && is_num && memo[i][mask] != -1)
                return memo[i][mask];
            int res = 0;
            if (!is_num)
            {
                // 可以跳过当前数位
                res = dfs(i + 1, mask, false, false);
            }
            // 如果前面填的数字都和 n 的一样,那么这一位至多填数字 s[i](否则就超过 n 啦)
            int up = is_limit ? s[i] - '0' : 9;
            // 枚举要填入的数字 d
            for (int d = 1 - is_num; d <= up; d++)
                if ((mask >> d & 1) == 0)
                {
                    // d 不在 mask 中
                    res += dfs(i + 1, mask | (1 << d), is_limit && d == up, true);
                }
            if (!is_limit && is_num)
                memo[i][mask] = res; // 记忆化
            return res;
        };

        return dfs(0, 0, true, false);
    }
};
// @lc code=end

结果:

在这里插入图片描述

复杂度分析:

时间复杂度:O(mD2D),其中 m 为字符串 s = to_string(n) 的长度,即 O(log⁡n),D = 10。由于每个状态只会计算一次,因此动态规划的时间复杂度 = 状态个数 × times × 单个状态的计算时间。本题状态个数为 O(m2D),单个状态的计算时间为 O(D),因此时间复杂度为 O(mD2D)。

空间复杂度:O(m2D),其中 m 为字符串 s = to_string(n) 的长度,即 O(log⁡n),D = 10。

拓展题:1012. 至少有 1 位重复的数字

题目链接:1012. 至少有 1 位重复的数字

代码:

/*
 * @lc app=leetcode.cn id=1012 lang=cpp
 *
 * [1012] 至少有 1 位重复的数字
 */

// @lc code=start

// 数位 DP

class Solution
{
public:
    int numDupDigitsAtMostN(int n)
    {
        string s = to_string(n);
        int len = s.length(), memo[len][1 << 10];
        memset(memo, -1, sizeof(memo)); // -1 表示没有计算过

        function<int(int, int, bool, bool)> dfs;
        // 返回从 i 开始填数字,前面填的数字集合是 mask,能构造出的特殊整数的数目
        // is_limit 表示前面填的数字是否都是 n 对应位上的,
        // 如果为 true,那么当前位至多为 s[i],否则至多为 9
        // is_num 表示前面是否填了数字(是否跳过),
        // 如果为 true,那么当前位可以从 0 开始,否则当前位可以跳过,或者从 1 开始填数字
        dfs = [&](int i, int mask, bool is_limit, bool is_num) -> int
        {
            if (i == len)
            {
                // 找到了一个合法数字
                return is_num;
            }
            if (!is_limit && is_num && memo[i][mask] != -1)
                return memo[i][mask];
            int res = 0;
            if (!is_num)
            {
                // 可以跳过当前数位
                res = dfs(i + 1, mask, false, false);
            }
            // 如果前面填的数字都和 n 的一样,那么这一位至多填数字 s[i](否则就超过 n 啦)
            int up = is_limit ? s[i] - '0' : 9;
            // 枚举要填入的数字 d
            for (int d = 1 - is_num; d <= up; d++)
                if ((mask >> d & 1) == 0)
                {
                    // d 不在 mask 中
                    res += dfs(i + 1, mask | (1 << d), is_limit && d == up, true);
                }
            if (!is_limit && is_num)
                memo[i][mask] = res; // 记忆化
            return res;
        };

        return n - dfs(0, 0, true, false);
    }
};
// @lc code=end

结果:

在这里插入图片描述

复杂度分析:

时间复杂度:O(mD2D),其中 m 为字符串 s = to_string(n) 的长度,即 O(log⁡n),D = 10。由于每个状态只会计算一次,因此动态规划的时间复杂度 = 状态个数 × times × 单个状态的计算时间。本题状态个数为 O(m2D),单个状态的计算时间为 O(D),因此时间复杂度为 O(mD2D)。

空间复杂度:O(m2D),其中 m 为字符串 s = to_string(n) 的长度,即 O(log⁡n),D = 10。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UestcXiye

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值