Longest Palindromic Substring

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

Example:

Input: “babad”

Output: “bab”

Note: “aba” is also a valid answer.
Example:

Input: “cbbd”

Output: “bb”
方法是用动态规划,思路比较复杂一些,但是实现代码会比较简短。基本思路是外层循环i从后往前扫,内层循环j从i当前字符扫到结尾处。过程中使用的历史信息是从i+1到n之间的任意子串是否是回文已经被记录下来,所以不用重新判断,只需要比较一下头尾字符即可。这种方法使用两层循环,时间复杂度是O(n^2)。而空间上因为需要记录任意子串是否为回文,需要O(n^2)的空间

class Solution {
public:
    string longestPalindrome(string s) {
    if(s.length() == 0)
        return "";
    bool exist[s.length()][s.length()] = {false};
    string res;
    int maxlen = 0;
    for(int i = s.length()-1; i >= 0; --i)
    {
        for(int j = i; j < s.length(); ++j)
        {
            if(s[i] == s[j] && (j-i<=2 || exist[i+1][j-1]))
            {
                exist[i][j] = true;
                if(maxlen < j-i+1)
                {
                    maxlen = j-i+1;
                    res = s.substr(i,maxlen);
                }
            }
        }
    }
    return res;
    }
};

另一种方法比较直接,实现起来比较容易理解。基本思路是对于每个子串的中心(可以是一个字符,或者是两个字符的间隙,比如串abc,中心可以是a,b,c,或者是ab的间隙,bc的间隙)往两边同时进行扫描,直到不是回文串为止。假设字符串的长度为n,那么中心的个数为2*n-1(字符作为中心有n个,间隙有n-1个)。对于每个中心往两边扫描的复杂度为O(n),所以时间复杂度为O((2*n-1)*n)=O(n^2),空间复杂度为O(1),代码如下:

string longestPalindrome(String s) {  
    if(s.length()==0)  
        return "";  
    int maxLen = 0;  
    string res = "";  
    for(int i=0;i<2*s.length()-1;i++)  
    {  
        int left = i/2;  
        int right = i/2;  
        if(i%2==1)  
            right++;  
        string str = lengthOfPalindrome(s,left,right);  
        if(maxLen<str.length())  
        {  
            maxLen = str.length();  
            res = str;  
        }  
    }  
    return res;  
}  
string lengthOfPalindrome(string s, int left, int right)  
{  

    while(left>=0 && right<s.length() && s[left]==s[right])  
    {  
        left--;  
        right++;  
    }  
    return s.substring(left+1,right);  
}  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值