Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example:
Input: “babad”
Output: “bab”
Note: “aba” is also a valid answer.
Example:
Input: “cbbd”
Output: “bb”
方法是用动态规划,思路比较复杂一些,但是实现代码会比较简短。基本思路是外层循环i从后往前扫,内层循环j从i当前字符扫到结尾处。过程中使用的历史信息是从i+1到n之间的任意子串是否是回文已经被记录下来,所以不用重新判断,只需要比较一下头尾字符即可。这种方法使用两层循环,时间复杂度是O(n^2)。而空间上因为需要记录任意子串是否为回文,需要O(n^2)的空间
class Solution {
public:
string longestPalindrome(string s) {
if(s.length() == 0)
return "";
bool exist[s.length()][s.length()] = {false};
string res;
int maxlen = 0;
for(int i = s.length()-1; i >= 0; --i)
{
for(int j = i; j < s.length(); ++j)
{
if(s[i] == s[j] && (j-i<=2 || exist[i+1][j-1]))
{
exist[i][j] = true;
if(maxlen < j-i+1)
{
maxlen = j-i+1;
res = s.substr(i,maxlen);
}
}
}
}
return res;
}
};
另一种方法比较直接,实现起来比较容易理解。基本思路是对于每个子串的中心(可以是一个字符,或者是两个字符的间隙,比如串abc,中心可以是a,b,c,或者是ab的间隙,bc的间隙)往两边同时进行扫描,直到不是回文串为止。假设字符串的长度为n,那么中心的个数为2*n-1(字符作为中心有n个,间隙有n-1个)。对于每个中心往两边扫描的复杂度为O(n),所以时间复杂度为O((2*n-1)*n)=O(n^2),空间复杂度为O(1),代码如下:
string longestPalindrome(String s) {
if(s.length()==0)
return "";
int maxLen = 0;
string res = "";
for(int i=0;i<2*s.length()-1;i++)
{
int left = i/2;
int right = i/2;
if(i%2==1)
right++;
string str = lengthOfPalindrome(s,left,right);
if(maxLen<str.length())
{
maxLen = str.length();
res = str;
}
}
return res;
}
string lengthOfPalindrome(string s, int left, int right)
{
while(left>=0 && right<s.length() && s[left]==s[right])
{
left--;
right++;
}
return s.substring(left+1,right);
}