题意:
有n个点,最多n层,每个点都属于其中一个层。相邻层之间的任意点可以相互通行,花费为C。此外点与点之间还有一些带权边相连,边权即为花费。所有花费均为正整数值。从节点1到节点n,求最短路的总花费。
分析:
这题数据范围比较大,而且没有负权边,可以考虑队列优化的dijkstra算法,复杂度O(ElgE)。
建图比较有技术含量。层与层之间任意点可相互通行,如果每两个点之间都连一条边,边数最大可能到V^2,会TLE。可以这样考虑,在每层之间设置两个“中转站”,一个中转站专门用于相邻层进入该层与从该中转站到层内任意点;另一个中转站用于离开该层到相邻层以及该层内任意点到该中转站。这样可以做到用最多M+2*N条边表示这个图。层与层之间的通行与优化前相比也是等价的。
另外借由这题还顺便复习了一下队列优化的dijkstra算法。
(1)将源点加入队列,并使dist[s]=0。
(2)当队列不为空,取首元素并将其从队列中删除。
(3)若该元素已被访问过,继续(2),否则进行(3)。
(4)用该元素去松弛其他的未被访问的节点,若松弛一个,就将其加入队列,继续(2)
代码:
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define N 100005
#define max(x,y) (x>y?x:y)
#define INF (1<<30)
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > >heap;
struct Edge{
int to,w,next;
};
Edge edge[N*6];bool vis[N*3];
int head[N*3],cnt,dist[N*3],n,m,lay[N];
void addedge(int u,int v,int w){
edge[cnt].to=v;edge[cnt].w=w;edge[cnt].next=head[u];head[u]=cnt++;
}
void dijkstra(){
while(!heap.empty()) heap.pop();
for(int i=1;i<=3*n;++i) dist[i]=INF;
int u,v;dist[1]=0;heap.push(make_pair(0,1));
while(!heap.empty()){
u=heap.top().second;heap.pop();
if(vis[u]==true) continue;
vis[u]=true;if(u==n) break;
for(int i=head[u];i!=-1;i=edge[i].next){
v=edge[i].to;
if(vis[v]==false&&dist[v]>dist[u]+edge[i].w){
dist[v]=dist[u]+edge[i].w;
heap.push(make_pair(dist[v],v));
}
}
}
}
int main(){
int t,c,u,v,w,L,Case=1;scanf("%d",&t);
while(t--){
scanf("%d%d%d",&n,&m,&c);L=0;
cnt=0;memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;++i){
scanf("%d",&lay[i]);L=max(L,lay[i]);
addedge(n+2*lay[i]-1,i,0);addedge(i,n+2*lay[i],0);
}
for(int i=0;i<m;++i){
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);addedge(v,u,w);
}
for(int i=1;i<L;++i){
addedge(n+2*i,n+2*(i+1)-1,c);
addedge(n+2*(i+1),n+2*i-1,c);
}
dijkstra();
if(dist[n]==INF) printf("Case #%d: -1\n",Case++);
else printf("Case #%d: %d\n",Case++,dist[n]);
}
return 0;
}