1.图论这个概念是从离散数学知道的,其实就是说,有那么几个离散的点通过一些线段连起来,是他们具有一定的逻辑关系。
2.图分有向图和无向图,图中的边具有权值。
3.图的遍历
深度优先搜索;
广度优先搜索;
图的存储:邻接矩阵
MGraph::MGraph(T a[ ], int n, int e) {
vertexNum=n; arcNum=e;
for (i=0; i<vertexNum; i++)
vertex[i]=a[i];
for (i=0; i<vertexNum; i++) //初始化邻接矩阵
for (j=0; j<vertexNum; j++)
arc[i][j]=0;
for (k=0; k<arcNum; k++) {
cin>>i>>j; //边依附的两个顶点的序号
arc[i][j]=1; arc[j][i]=1; //置有边标志
}
}
图的深度优先搜索
void MGraph::DFSTraverse(int v){
cout<<vertex[v]; visited [v]=1;
for (j=0; j<vertexNum; j++)
if (arc[v][j]==1 && visited[j]==0)
DFSTraverse( j );
}
图的广度搜索
int visited[MaxSize];
template <class T>
void MGraph::BFSTraverse(int v){
front=rear=-1; //假设采用顺序队列且不会发生溢出
int Q[MaxSize]; cout<<vertex[v]; visited[v]=1; Q[++rear]=v;
while (front!=rear) {
v=Q[++front];
for (j=0; j<vertexNum; j++)
if (arc[v][j]==1 && visited[j]==0 ) {
cout<<vertex[j]; visited[j]=1; Q[++rear]=j;
}
}
}
//使用queue队列比较好