陈浥尘
码龄3年
  • 4,866
    被访问
  • 7
    原创
  • 137,277
    排名
  • 11
    粉丝
  • 0
    铁粉
关注
提问 私信

个人简介:三维视觉方向

  • 毕业院校: 中南大学
  • 加入CSDN时间: 2019-04-15
博客简介:

PromiseChen0的博客

查看详细资料
  • 2
    领奖
    总分 137 当月 0
个人成就
  • 获得16次点赞
  • 内容获得22次评论
  • 获得19次收藏
创作历程
  • 6篇
    2022年
  • 1篇
    2021年
成就勋章
TA的专栏
  • 从零实现无序抓取
    5篇
  • 论文精读
    2篇
兴趣领域 设置
  • 数据结构与算法
    排序算法
  • 人工智能
    聚类分类回归
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

从零实现无序抓取(五)利用两阶段的算法估计多目标场景中物体位姿

前言在之前的文章中,我们基于模版匹配的方法估计了单个目标的位姿,但是这种方法只适用于场景中只有一个目标,一旦场景中有多个目标,算法很容易失效。一方面,一个完整的抓取场景往往范围比较大(相对于单个零件而言),采集到的常见点云数量会很多,尤其如果使用的一些高精度的工业级点云传感器,可以生成数百万的点。如果是只选取这大量点中的少量的关键点计算特征向量,可能会导致无法匹配,选的太多速度又太慢。另一方面,采集整个场景肯定会采集到背景,对背景进行点云特征向量计算也会对算力的浪费。针对上述的问题,采用两阶段的算法往往
原创
发布博客 2022.05.09 ·
620 阅读 ·
3 点赞 ·
5 评论

论文精读:Asynchronous, Photometric Feature Tracking using Events and Frames(IJCV 2019)

前言这篇文章的方法是利用传统的frame对图像做初始化,然后在event上面进行跟踪。论文地址:Asynchronous, Photometric Feature Tracking using Events and Frames发现还有人把作者附的视频上传到了B站论文video背景事件相机不输出绝对强度图像,而是输出异步事件流,优点是延迟非常低(1微秒)传统相机提供像素直接测量,但延迟较高(10-20毫秒)主要贡献第一个将frame和event结合的特征跟踪器实现了SOTA做了在
原创
发布博客 2022.05.03 ·
156 阅读 ·
1 点赞 ·
0 评论

论文精读:Star Tracking using an Event Camera(CVPRW2019)

前言这篇文章很有意思,利用事件相机来观星论文地址:Star Tracking using an Event Camera背景利用事件相机来跟踪恒星,功耗更低速度更快主要贡献一个从事件相机数据中进行恒星跟踪的pipeline一个恒星跟踪数据集...
原创
发布博客 2022.04.25 ·
527 阅读 ·
1 点赞 ·
0 评论

从零实现无序抓取(四)如何获取点云位姿估计真值

前言这是一章预告。上一章在进行点云位姿估计时,我们利用PCL库对原始点云进行了一个人工设定的变换矩阵,这个变换矩阵可以作为位姿估计的真值。但是这种方式只能很简单地将某个原始点云整体进行变换。也就是只能生成下图这种变化。但是我们的实际的位姿估计算法不可能只在这种简单的场景下应用。一般来说,具体的抓取场景应该是有多个目标相互堆叠存在于场景中的。类似这样。现实中我们可以利用点云相机采集这个场景的点云,然后估计目标的位姿,但是我们难以通过测量的方式得到每个零件的6DoF位姿,也就是说我们很难得到场景中目
原创
发布博客 2022.04.16 ·
2829 阅读 ·
2 点赞 ·
4 评论

bullet自由落体仿真

发布视频 2022.04.16

从零实现无序抓取(三)不同特征描述子的3D位姿估计对比

前言3D点云的姿态估计有时可以看作是点云配准的过程,其实就是计算场景点云Ps和模版点云Pm之间的位姿变换关系。这种变换一般都是刚性变换,包含平移和旋转。目前最常用的是采用两阶段的算法来进行位姿的精确估计。第一阶段,采用SAI-IA算法进行位姿粗估计,第二阶段,采用ICP迭代优化位姿,进行精确的位姿估计。一、点云特征描述子常见的特征描述子:FPFH,SHOT,3DSC具体实现就不写了,后期有时间的话慢慢补上。这里详细讲一下特征描述子的作用。首先举个例子,现在你家里人叫你去相亲,但是他们没有女方A的照
原创
发布博客 2022.04.16 ·
239 阅读 ·
6 点赞 ·
12 评论

基于二维与三维视觉融合的无序抓取实验

发布视频 2022.04.12

从零实现无序抓取(二)制作属于自己的点云数据

前言进来写毕业论文,想根据自己的要求生成一些点云数据,发现PCL库可以根据obj格式的文件生成点云,而且点云的数量可控。一、 绘制.obj格式的三维图画obj格式的图像很多三维软件都可以实现,我这里是用soliworks中的scan to 3d插件实现的。提前准备好scan to 3d插件,在工具->插件->ScanTo3D中打钩。1.1 绘制零件图首先,画一个三维零件图,不会的先去学solidworks。1.2 另存为stl点击另存为.stl格式这个格式的文件,Windo
原创
发布博客 2022.04.11 ·
383 阅读 ·
1 点赞 ·
1 评论

从零实现无序抓取(一)点云读取与可视化

一、点云加载常见的点云文件有两种格式: PCD和PLY,PCL很好的支持了加载这两种格式。PCD加载#include<iostream>#include<pcl/io/pcd_io.h>#include<pcl/io/ply_io.h>#include<pcl/point_types.h>int main(int argc, char** argv){ pcl::PointCloud<pcl::PointXYZRGB>::
原创
发布博客 2021.11.05 ·
101 阅读 ·
2 点赞 ·
0 评论