给你一个字符数组 chars ,请使用下述算法压缩:
从一个空字符串 s 开始。对于 chars 中的每组 连续重复字符 :
如果这一组长度为 1 ,则将字符追加到 s 中。
否则,需要向 s 追加字符,后跟这一组的长度。
压缩后得到的字符串 s 不应该直接返回 ,需要转储到字符数组 chars 中。需要注意的是,如果组长度为 10 或 10 以上,则在 chars 数组中会被拆分为多个字符。请在 修改完输入数组后 ,返回该数组的新长度。
你必须设计并实现一个只使用常量额外空间的算法来解决此问题。
思路和算法
为了实现原地压缩,我们可以使用双指针分别标志我们在字符串中读和写的位置。每次当读指针 \textit{read}read 移动到某一段连续相同子串的最右侧,我们就在写指针 \textit{write}write 处依次写入该子串对应的字符和子串长度即可。
在实际代码中,当读指针 \textit{read}read 位于字符串的末尾,或读指针 \textit{read}read 指向的字符不同于下一个字符时,我们就认为读指针 \textit{read}read 位于某一段连续相同子串的最右侧。该子串对应的字符即为读指针 \textit{read}read 指向的字符串。我们使用变量 \textit{left}left 记录该子串的最左侧的位置,这样子串长度即为 \textit{read} - \textit{left} + 1read−left+1。
特别地,为了达到 O(1)O(1) 空间复杂度,我们需要自行实现将数字转化为字符串写入到原字符串的功能。这里我们采用短除法将子串长度倒序写入原字符串中,然后再将其反转即可。
class Solution { public: int compress(vector<char>& chars) { int n = chars.size(); int write = 0, left = 0; for (int read = 0; read < n; read++) { if (read == n - 1 || chars[read] != chars[read + 1]) { chars[write++] = chars[read]; int num = read - left + 1; if (num > 1) { int anchor = write; while (num > 0) { chars[write++] = num % 10 + '0'; num /= 10; } reverse(&chars[anchor], &chars[write]); } left = read + 1; } } return write; } };