有N个城市(编号为0~N-1)、M条道路(无向边),并给出M条道路的距离属性与花费属性。现在给定起点S与终点D,求从起点到终点的最短路径、最短距离及花费。注意:如果有多条最短路径,则选择花费最小的那条

本文介绍了三种算法解决最短路径问题:Dijkstra算法用于精确计算从源节点到目标节点的最短路径,结合DFS进行路径回溯;另一种方法是Dijkstra+DFS,通过预计算最小成本路径;最后是Bellman-Ford算法,适用于存在负权边的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

题解1(Dijkstra):#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXV=510;
const int INF=1000000000;
int n,m,st,ed,G[MAXV][MAXV],cost[MAXV][MAXV];
int d[MAXV],c[MAXV],pre[MAXV];
bool vis[MAXV]={false};
void Dijkstra(int s){
    fill(d,d+MAXV,INF);
    fill(c,c+MAXV,INF);
    for(int i=0;i<n;i++) pre[i]=i;
    d[s]=0;
    c[s]=0;
    for(int i=0;i<n;i++){
        int u=-1,MIN=INF;
        for(int j=0;j<n;j++){
            if(vis[j]==false&&d[j]<MIN){
                u=j;
                MIN=d[j];
            }
        }
        if(u==-1)return;
        vis[u]=true;
        for(int v=0;v<n;v++){
            if
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超翔之逸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值