问题描述:
给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。
找到所有在 [1, n] 范围之间没有出现在数组中的数字。
您能在不使用额外空间且时间复杂度为O(n)的情况下完成这个任务吗? 你可以假定返回的数组不算在额外空间内。
示例:
输入:
[4,3,2,7,8,2,3,1]
输出:
[5,6]
解题思路:
看到这个题目最初想到的是使用两个集合来直接暴力,但是由于题目要求空间复杂度为O(1),注意,这里返回的数组不算在额外空间内,所以该题目的难点变成了,如何不在创建新的空间的情况下,完成题目的要求。
为了完成这一要求,我们不妨直接对数组进行操作,即我们可以直接修改数组的值,在这里采取的是置负法,即我们可以将出现的数作为下标将其对应得数组中得值置为相反数,这样我们最后再遍历一边数组得时候,只要得到得是大于等于0的元素,它们对应的下标就是没有出现过的数。注意数组的下标是从0开始的。
比如,nums={4,3,2,7,8,2,3,1}
i: 0 1 2 3 4 5 6 7
nums[i]: 4 3 2 7 8 2 3 1
(1)当i等于0时,我们得到nums[0]=4,此时我们将其对应在数组中的第四个元素改为相反数,即将nums[3]变为-7。得到如下序列:
i: 0 1 2 3 4 5 6 7
nums[i]: 4 3 2 -7 8 2 3 1
(2)当i等于1时,我们得到nums[1]=3,此时我们将其对应在数组中的第二个元素改为相反数,即将nums[2]变为-2。得到如下序列:
i: 0 1 2 3 4 5 6 7
nums[i]: 4 3 -2 -7 8 2 3 1
…重复上述操作…
注意在这里我们只要出现过一次就将其对应的改为原本的相反数,出现多次也仅改变一次,所以如果发现当前对应的元素已经变为了原先的相反数,我们就不想要再将其置为相反数了,因为我们的目的是置负。
最终得到如下序列:
i: 0 1 2 3 4 5 6 7
nums[i]: -4 -3 -2 -7 8 2 -3 -1
序列中,第五个和第六个元素是正数,所以我们得到[1,n]中5、6没有出现在数组中。
代码:
public class LC448 {
//置负法
public List<Integer> findDisappearedNumbers(int[] nums) {
List<Integer> ansList = new ArrayList<>();
for (int i = 0; i < nums.length; i++){
//判断当前是否已经变为负数
//注意这里一定要取绝对值,因为有可能nums中的元素已经为负数
if (nums[Math.abs(nums[i]) - 1] > 0)
nums[Math.abs(nums[i]) - 1] *= -1;
}
for (int i = 0; i < nums.length; i++){
//注意下标从0开始,所以第几个数,相应的要i+1
if (nums[i] >= 0){
ansList.add(i + 1);
}
}
return ansList;
}
public static void main(String[] args) {
LC448 obj = new LC448();
int[] nums = new int[]{4,3,2,7,8,2,3,1};
System.out.println(obj.findDisappearedNumbers(nums));
}
}