[菜鸟训练]714. 买卖股票的最佳时机含手续费

题目描述:

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:
输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
输出: 8
解释: 能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

注意:
0 < prices.length <= 50000.
0 < prices[i] < 50000.
0 <= fee < 50000.

解题思路:

方法一: 利用和309一样的思路,当处于第i天时,一共就存在两种状态,即持有股票和不持有股票两种状态。所以我们只需要遍历一遍数组并维护这两个状态即可。最终得到的最后一天不持有股票的情况即为最大利润。

方法二: 贪心算法,方法一中,我们将付手续费的操作放到了卖出股票时考虑,而我们换一种思考方式,每当我们买入一支股票时就付手续费,那岂不是我们将prices[i]+fee作为了我们买不买股票的标准,这就变得可以使用贪心算法了。
但是众所周知,贪心每次取得都是局部最优,那我怎么让其变为全局最优呢?在这里,我们提供了让其反悔得可能。即使用贪心的时候,我们看到比买入大就卖出了,但是它可能后一天能卖的得更多,那我们怎么避免这种情况呢,我们不妨当卖出后我们将卖出当天得价格赋给我们得评判标准,也就是给出反悔的机会,
这样如果下一天比当天的贵的话,我们就把下一天和当天的差值加入到最大利润中,这样就变成了当天没卖,下一天将股票卖出了,详见代码注释。

代码:

public class LC714 {
    //方法一:思路类似于309.最佳买卖股票时机含冷冻期
    //时间复杂度O(n) 空间复杂度O(n)
    //dp,对于第i天结束时来说,一共就只存在两种情况,持有股票,不持有股票
    public int maxProfit(int[] prices, int fee) {
        int ansProfit = 0;
        //第一维度代表第几天  第二维度0代表不持有股票 1代表持有股票
        //dp数组中存的是该天结束时的最大利润
        int[][] dp = new int[prices.length + 10][2];
        //起点:
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        for (int i = 1;i < prices.length; i++){
            //第i天结束持有股票的情况
            //1.i-1天就持有
            //2.i-1天不持有,第i天才买入
            dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0] - prices[i]);

            //第i天结束不持有股票
            //1.i-1天就不持有
            //2.i-1天持有,第i天卖出了
            dp[i][0] = Math.max(dp[i-1][0],dp[i-1][1] + prices[i] - fee);
        }
        //最后一天,最大利润一定是不持有股票的情况
        ansProfit = dp[prices.length-1][0];
        return ansProfit;
    }

    //方法二:贪心算法,我们转换一下思想,把卖出的时候付手续费改为买入的时候付手续费
    //当我们卖出一支股票时,就立即获得了以相同价格并且免除手续费买入一支股票的权利。
    //时间复杂度O(n) 空间复杂度O(1)
    public int maxProfit1(int[] prices, int fee) {
        int ansProfit = 0;
        //spend表示在最大收益的前提下,如果拥有一只股票,最低的买入价格。
        int spend = prices[0] + fee;
        for (int i = 1; i < prices.length;i++){
            if (prices[i] > spend){
                ansProfit += (prices[i] - spend);
                //反悔操作,如果下一天j的价格更高我们就获得prices[j] - prices[i]
                //这样我们就等于在这一天不进行任何操作,在下一天再卖出股票。
                //这样我们就把局部最优解转换为了全局最优
                spend = prices[i];
            }
            //如果当前天比之前假定的买入那天便宜,那我们就更新买入的时间和花费
            else if (prices[i] + fee < spend){
                spend = prices[i] + fee;
            }
        }
        return ansProfit;
    }


    public static void main(String[] args) {
        LC714 obj = new LC714();
        System.out.println(obj.maxProfit1(new int[]{1,3,7,5,10,3}, 3));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值