题目描述:
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
输出: 8
解释: 能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
注意:
0 < prices.length <= 50000.
0 < prices[i] < 50000.
0 <= fee < 50000.
解题思路:
方法一: 利用和309一样的思路,当处于第i天时,一共就存在两种状态,即持有股票和不持有股票两种状态。所以我们只需要遍历一遍数组并维护这两个状态即可。最终得到的最后一天不持有股票的情况即为最大利润。
方法二: 贪心算法,方法一中,我们将付手续费的操作放到了卖出股票时考虑,而我们换一种思考方式,每当我们买入一支股票时就付手续费,那岂不是我们将prices[i]+fee作为了我们买不买股票的标准,这就变得可以使用贪心算法了。
但是众所周知,贪心每次取得都是局部最优,那我怎么让其变为全局最优呢?在这里,我们提供了让其反悔得可能。即使用贪心的时候,我们看到比买入大就卖出了,但是它可能后一天能卖的得更多,那我们怎么避免这种情况呢,我们不妨当卖出后我们将卖出当天得价格赋给我们得评判标准,也就是给出反悔的机会,
这样如果下一天比当天的贵的话,我们就把下一天和当天的差值加入到最大利润中,这样就变成了当天没卖,下一天将股票卖出了,详见代码注释。
代码:
public class LC714 {
//方法一:思路类似于309.最佳买卖股票时机含冷冻期
//时间复杂度O(n) 空间复杂度O(n)
//dp,对于第i天结束时来说,一共就只存在两种情况,持有股票,不持有股票
public int maxProfit(int[] prices, int fee) {
int ansProfit = 0;
//第一维度代表第几天 第二维度0代表不持有股票 1代表持有股票
//dp数组中存的是该天结束时的最大利润
int[][] dp = new int[prices.length + 10][2];
//起点:
dp[0][0] = 0;
dp[0][1] = -prices[0];
for (int i = 1;i < prices.length; i++){
//第i天结束持有股票的情况
//1.i-1天就持有
//2.i-1天不持有,第i天才买入
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0] - prices[i]);
//第i天结束不持有股票
//1.i-1天就不持有
//2.i-1天持有,第i天卖出了
dp[i][0] = Math.max(dp[i-1][0],dp[i-1][1] + prices[i] - fee);
}
//最后一天,最大利润一定是不持有股票的情况
ansProfit = dp[prices.length-1][0];
return ansProfit;
}
//方法二:贪心算法,我们转换一下思想,把卖出的时候付手续费改为买入的时候付手续费
//当我们卖出一支股票时,就立即获得了以相同价格并且免除手续费买入一支股票的权利。
//时间复杂度O(n) 空间复杂度O(1)
public int maxProfit1(int[] prices, int fee) {
int ansProfit = 0;
//spend表示在最大收益的前提下,如果拥有一只股票,最低的买入价格。
int spend = prices[0] + fee;
for (int i = 1; i < prices.length;i++){
if (prices[i] > spend){
ansProfit += (prices[i] - spend);
//反悔操作,如果下一天j的价格更高我们就获得prices[j] - prices[i]
//这样我们就等于在这一天不进行任何操作,在下一天再卖出股票。
//这样我们就把局部最优解转换为了全局最优
spend = prices[i];
}
//如果当前天比之前假定的买入那天便宜,那我们就更新买入的时间和花费
else if (prices[i] + fee < spend){
spend = prices[i] + fee;
}
}
return ansProfit;
}
public static void main(String[] args) {
LC714 obj = new LC714();
System.out.println(obj.maxProfit1(new int[]{1,3,7,5,10,3}, 3));
}
}