【康复学习--LeetCode每日一题】3033. 修改矩阵

题目:

给你一个下标从 0 开始、大小为 m x n 的整数矩阵 matrix ,新建一个下标从 0 开始、名为 answer 的矩阵。使 answer 与 matrix 相等,接着将其中每个值为 -1 的元素替换为所在列的 最大 元素。
返回矩阵 answer 。

示例 1:
在这里插入图片描述
输入:matrix = [[1,2,-1],[4,-1,6],[7,8,9]]
输出:[[1,2,9],[4,8,6],[7,8,9]]
解释:上图显示了发生替换的元素(蓝色区域)。

  • 将单元格 [1][1] 中的值替换为列 1 中的最大值 8 。
  • 将单元格 [0][2] 中的值替换为列 2 中的最大值 9 。

示例 2:
在这里插入图片描述
输入:matrix = [[3,-1],[5,2]]
输出:[[3,2],[5,2]]
解释:上图显示了发生替换的元素(蓝色区域)。

提示:
m==matrix.length
n == matrix[i].length
2 <= m, n <= 50
-1 <= matrix[i][j] <= 100
测试用例中生成的输入满足每列至少包含一个非负整数。

思路:

遍历,先找出当前列中最大的值,然后进行替换。

代码:

class Solution {
    public int[][] modifiedMatrix(int[][] matrix) {
        int n = matrix.length;
        int m  = matrix[0].length;
        for(int j = 0; j < m; j++){
            int tmp = -1;
            for(int i = 0; i < n; i++){
                tmp = Math.max(tmp, matrix[i][j]);
            }
            for(int i = 0; i < n; i++){
                if(matrix[i][j] == -1){
                    matrix[i][j] = tmp;
                }
            }
        }
        return matrix;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值