题目:
给你一个整数数组,返回它的某个 非空 子数组(连续元素)在执行一次可选的删除操作后,所能得到的最大元素总和。换句话说,你可以从原数组中选出一个子数组,并可以决定要不要从中删除一个元素(只能删一次哦),(删除后)子数组中至少应当有一个元素,然后该子数组(剩下)的元素总和是所有子数组之中最大的。
注意,删除一个元素后,子数组 不能为空。
示例 1:
输入:arr = [1,-2,0,3]
输出:4
解释:我们可以选出 [1, -2, 0, 3],然后删掉 -2,这样得到 [1, 0, 3],和最大。
示例 2:
输入:arr = [1,-2,-2,3]
输出:3
解释:我们直接选出 [3],这就是最大和。
示例 3:
输入:arr = [-1,-1,-1,-1]
输出:-1
解释:最后得到的子数组不能为空,所以我们不能选择 [-1] 并从中删去 -1 来得到 0。
我们应该直接选择 [-1],或者选择 [-1, -1] 再从中删去一个 -1。
提示:
1 <= arr.length <= 105
-104 <= arr[i] <= 104
思路:
dp[i][0]=max(dp[i−1][0],0)+arr[i]
dp[i][1]=max(dp[i−1][1]+arr[i],dp[i−1][0])
代码:
class Solution {
public int maximumSum(int[] arr) {
int tmp1 = arr[0], tmp2 = 0, ans = arr[0];
for(int i = 1; i < arr.length; i++){
tmp2 = Math.max(tmp1, tmp2 + arr[i]);
tmp1 = Math.max(tmp1, 0) + arr[i];
ans = Math.max(ans, Math.max(tmp1, tmp2));
}
return ans;
}
}