Poj 2139 Six Degrees of Cowvin Bacon (floyd最短路)

 Six Degrees of Cowvin Bacon

===========================

             Time Limit: 1000MS
             Memory Limit: 65536K
            Total Submissions: 3993

Description
The cows have been making movies lately, so they are ready to play a variant of the famous game “Six Degrees of Kevin Bacon”.

The game works like this: each cow is considered to be zero degrees of separation (degrees) away from herself. If two distinct cows have been in a movie together, each is considered to be one ‘degree’ away from the other. If a two cows have never worked together but have both worked with a third cow, they are considered to be two ‘degrees’ away from each other (counted as: one degree to the cow they’ve worked with and one more to the other cow). This scales to the general case.

The N (2 <= N <= 300) cows are interested in figuring out which cow has the smallest average degree of separation from all the other cows. excluding herself of course. The cows have made M (1 <= M <= 10000) movies and it is guaranteed that some relationship path exists between every pair of cows.
Input

  • Line 1: Two space-separated integers: N and M

  • Lines 2…M+1: Each input line contains a set of two or more space-separated integers that describes the cows appearing in a single movie. The first integer is the number of cows participating in the described movie, (e.g., Mi); the subsequent Mi integers tell which cows were.
    Output

  • Line 1: A single integer that is 100 times the shortest mean degree of separation of any of the cows.
    Sample Input
    4 2
    3 1 2 3
    2 3 4
    Sample Output
    100
    Hint
    [Cow 3 has worked with all the other cows and thus has degrees of separation: 1, 1, and 1 – a mean of 1.00 .]

题意:如果两头牛在同一部电影中出现过,那么这两头牛的度就为1, 如果这两头牛a,b没有在同一部电影中出现过,但a,b分别与c在同一部电影中出现过,那么a,b的度为2。以此类推,a与b之间有n头媒介牛,那么a,b的度为n+1。 给出m部电影,每一部给出牛的个数,和牛的编号。问那一头到其他每头牛的度数平均值最小,输出最小平均值乘100。

题解:到所有牛的度数的平均值最小,也就是到所有牛的度数总和最小。那么就是找这头牛到其他每头牛的最小度,也就是最短路径,相加再除以(n-1)就是最小平均值。对于如何确定这头牛,我们可以枚举,最后记录最下平均值即可。

代码如下:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=350;
int map[N][N];
int n,m;
int s[N];
void init()    //初始化
{
    for(int i=1; i<=n; i++)
        for(int j=1; j<=n; j++)
            if(i!=j)
                map[i][j]=1e9;   //初始化为较大的值
            else
                map[i][j]=0;
}
void Flyod()   //弗洛伊德函数
{
    int i,j,k;
    int  minsum,sum;
    long long ans=0;
    //floyd-warshall 算法核心语句  松弛
    for(k=1; k<=n; k++)
        for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
                map[i][j]=min(map[i][j],map[k][j]+map[i][k]);
    minsum=100000000;   //定义一个较大的最小值,然后不断更新他的最小值
    for(i=1; i<=n; i++)   //枚举每一头牛
    {

        sum=0;
        for(j=1; j<=n; j++)
            sum+=map[i][j];  //记录到其他牛的度的最小值和

        if(minsum>sum)   //不断更新最小值
            minsum=sum;
    }

    cout<<minsum*100/(n-1)<<endl;   //输出其平均值的100倍
}
int main()
{
    while(cin>>n>>m)
    {
        int mi;
        init();
        for(int i=1; i<=m; i++)
        {
            cin>>mi;
            for(int j=1; j<=mi; j++)
                cin>>s[j];
            for(int j=1; j<=mi; j++)  //将度入到map数组中
                for(int k=j+1; k<=mi; k++)
                {
                    map[s[j]][s[k]]=1;
                    map[s[k]][s[j]]=1;
                }

        }
        Flyod();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值