Six Degrees of Cowvin Bacon
===========================
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 3993
Description
The cows have been making movies lately, so they are ready to play a variant of the famous game “Six Degrees of Kevin Bacon”.
The game works like this: each cow is considered to be zero degrees of separation (degrees) away from herself. If two distinct cows have been in a movie together, each is considered to be one ‘degree’ away from the other. If a two cows have never worked together but have both worked with a third cow, they are considered to be two ‘degrees’ away from each other (counted as: one degree to the cow they’ve worked with and one more to the other cow). This scales to the general case.
The N (2 <= N <= 300) cows are interested in figuring out which cow has the smallest average degree of separation from all the other cows. excluding herself of course. The cows have made M (1 <= M <= 10000) movies and it is guaranteed that some relationship path exists between every pair of cows.
Input
-
Line 1: Two space-separated integers: N and M
-
Lines 2…M+1: Each input line contains a set of two or more space-separated integers that describes the cows appearing in a single movie. The first integer is the number of cows participating in the described movie, (e.g., Mi); the subsequent Mi integers tell which cows were.
Output -
Line 1: A single integer that is 100 times the shortest mean degree of separation of any of the cows.
Sample Input
4 2
3 1 2 3
2 3 4
Sample Output
100
Hint
[Cow 3 has worked with all the other cows and thus has degrees of separation: 1, 1, and 1 – a mean of 1.00 .]
题意:如果两头牛在同一部电影中出现过,那么这两头牛的度就为1, 如果这两头牛a,b没有在同一部电影中出现过,但a,b分别与c在同一部电影中出现过,那么a,b的度为2。以此类推,a与b之间有n头媒介牛,那么a,b的度为n+1。 给出m部电影,每一部给出牛的个数,和牛的编号。问那一头到其他每头牛的度数平均值最小,输出最小平均值乘100。
题解:到所有牛的度数的平均值最小,也就是到所有牛的度数总和最小。那么就是找这头牛到其他每头牛的最小度,也就是最短路径,相加再除以(n-1)就是最小平均值。对于如何确定这头牛,我们可以枚举,最后记录最下平均值即可。
代码如下:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=350;
int map[N][N];
int n,m;
int s[N];
void init() //初始化
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
if(i!=j)
map[i][j]=1e9; //初始化为较大的值
else
map[i][j]=0;
}
void Flyod() //弗洛伊德函数
{
int i,j,k;
int minsum,sum;
long long ans=0;
//floyd-warshall 算法核心语句 松弛
for(k=1; k<=n; k++)
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
map[i][j]=min(map[i][j],map[k][j]+map[i][k]);
minsum=100000000; //定义一个较大的最小值,然后不断更新他的最小值
for(i=1; i<=n; i++) //枚举每一头牛
{
sum=0;
for(j=1; j<=n; j++)
sum+=map[i][j]; //记录到其他牛的度的最小值和
if(minsum>sum) //不断更新最小值
minsum=sum;
}
cout<<minsum*100/(n-1)<<endl; //输出其平均值的100倍
}
int main()
{
while(cin>>n>>m)
{
int mi;
init();
for(int i=1; i<=m; i++)
{
cin>>mi;
for(int j=1; j<=mi; j++)
cin>>s[j];
for(int j=1; j<=mi; j++) //将度入到map数组中
for(int k=j+1; k<=mi; k++)
{
map[s[j]][s[k]]=1;
map[s[k]][s[j]]=1;
}
}
Flyod();
}
return 0;
}