第五届省赛题B—Circle (说白了就是规律题)

Description
You have been given a circle from 0 to n - 1. If you are currently at x, you will move to (x - 1) mod n or (x + 1) mod n with equal probability. Now we want to know the expected number of steps you need to reach x from 0.
Input
The first line contains one integer T — the number of test cases.

Each of the next T lines contains two integers n, x (0  ≤ x < n ≤ 1000) as we mention above.
Output
For each test case. Print a single float number — the expected number of steps you need to reach x from 0. The figure is accurate to 4 decimal places.
Sample Input
3
3 2
5 4
10 5
Sample Output
2.0000
4.0000
25.0000

**【题意】:**n个数围成一个圈,编号0~n-1,从一个数到其上一个和下一个的数的概率相同(即都是0.5)。给出n,求从0出发到达一个数x所需要的步数的数学期望。
【思路】:
d[i]=0.5d[i+1]+0.5d[i-1] //任意一点通过上下两点到达的概率都是1/2
d[n]=d[0]=0
d[i]=d[n-i] //后两点利用了圆的对称性
这个题这三点自己想到了但是却没有找到规律,最后在队友的帮助下才发现的,这个规律真的是太神奇了

规律:
N 0 1 2 3 4 5 6 7 8 9
1 0
2 0 1
3 0 2 2
4 0 3 4 3
5 0 4 6 6 4

N 0 n-1 2n-4 3n-9
即求期望的递归

【代码】:

#include <iostream>
#include <cstdio>
using namespace std;
const int N=2000;
double dp[N];


int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        int n,x;
        cin>>n>>x;
        if(x>n/2)
            x=n-x;
        dp[0]=0;
        for(int i=1;i<=x;i++)
            dp[i]=dp[i-1]+n-(2*i-1);

        printf("%.4lf\n",dp[x]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值