Spring Kafka 之 @KafkaListener 单条或批量处理消息

👇👇关注后回复 “进群” ,拉你进程序员交流群👇👇

来源:https://blog.csdn.net/ldw201510803006/article/details/116176711

消息监听容器

1、KafkaMessageListenerContainer

由spring提供用于监听以及拉取消息,并将这些消息按指定格式转换后交给由@KafkaListener注解的方法处理,相当于一个消费者;

看看其整体代码结构:

ab0e692db8fe2c38c68e670b1da08710.png
  • 可以发现其入口方法为doStart(), 往上追溯到实现了SmartLifecycle接口,很明显,由spring管理其start和stop操作;

  • ListenerConsumer, 内部真正拉取消息消费的是这个结构,其 实现了Runable接口,简言之,它就是一个后台线程轮训拉取并处理消息

  • 在doStart方法中会创建ListenerConsumer并交给线程池处理

  • 以上步骤就开启了消息监听过程

KafkaMessageListenerContainer#doStart

protected void doStart() {
 if (isRunning()) {
  return;
 }
 if (this.clientIdSuffix == null) { // stand-alone container
  checkTopics();
 }
 ContainerProperties containerProperties = getContainerProperties();
 checkAckMode(containerProperties);
 
 ......
 
    // 创建ListenerConsumer消费者并放入到线程池中执行
 this.listenerConsumer = new ListenerConsumer(listener, listenerType);
 setRunning(true);
 this.startLatch = new CountDownLatch(1);
 this.listenerConsumerFuture = containerProperties
   .getConsumerTaskExecutor()
   .submitListenable(this.listenerConsumer);
 
 ......
 
}

KafkaMessageListenerContainer.ListenerConsumer#run

public void run() { // NOSONAR complexity
 
 .......
 
 Throwable exitThrowable = null;
 while (isRunning()) {
  try {
      // 拉去消息并处理消息
   pollAndInvoke();
  }
  catch (@SuppressWarnings(UNUSED) WakeupException e) {
  
         ......
  
  }
  
  ......
  
 }
 wrapUp(exitThrowable);
}

2、ConcurrentMessageListenerContainer

并发消息监听,相当于创建消费者;其底层逻辑仍然是通过KafkaMessageListenerContainer实现处理;从实现上看就是在KafkaMessageListenerContainer上做了层包装,有多少的concurrency就创建多个KafkaMessageListenerContainer,也就是concurrency个消费者

f2d6871135bd686b068744be83c3df04.png

ConcurrentMessageListenerContainer#doStart

protected void doStart() {
 if (!isRunning()) {
  checkTopics();
  
  ......
  
  setRunning(true);
 
  for (int i = 0; i < this.concurrency; i++) {
   KafkaMessageListenerContainer<K, V> container =
     constructContainer(containerProperties, topicPartitions, i);
   String beanName = getBeanName();
   container.setBeanName((beanName != null ? beanName : "consumer") + "-" + i);
   
   ......
   
   if (isPaused()) {
    container.pause();
   }
   // 这里调用KafkaMessageListenerContainer启动相关监听方法
   container.start();
   this.containers.add(container);
  }
 }
}

@KafkaListener底层监听原理

上面已经介绍了KafkaMessageListenerContainer的作用是拉取并处理消息,但还缺少关键的一步,即 如何将我们的业务逻辑与KafkaMessageListenerContainer的处理逻辑联系起来?

那么这个桥梁就是@KafkaListener注解

  • KafkaListenerAnnotationBeanPostProcessor, 从后缀BeanPostProcessor就可以知道这是Spring IOC初始化bean相关的操作,当然这里也是;此类会扫描带@KafkaListener注解的类或者方法,通过 KafkaListenerContainerFactory工厂创建对应的KafkaMessageListenerContainer,并调用start方法启动监听,也就是这样打通了这条路…

Spring Boot 自动加载kafka相关配置

1、KafkaAutoConfiguration

  • 自动生成kafka相关配置,比如当缺少这些bean的时候KafkaTemplate、ProducerListener、ConsumerFactory、ProducerFactory等,默认创建bean实例

2、KafkaAnnotationDrivenConfiguration

  • 主要是针对于spring-kafka提供的注解背后的相关操作,比如 @KafkaListener;

  • 在开启了@EnableKafka注解后,spring会扫描到此配置并创建缺少的bean实例,比如当配置的工厂beanName不是kafkaListenerContainerFactory的时候,就会默认创建一个beanName为kafkaListenerContainerFactory的实例,这也是为什么在springboot中不用定义consumer的相关配置也可以通过@KafkaListener正常的处理消息

生产配置

1、单条消息处理
@Configuration
@EnableKafka
public class KafkaConfig {

    @Bean
    KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>>
                        kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> factory =
                                new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        factory.setConcurrency(3);
        factory.getContainerProperties().setPollTimeout(3000);
        return factory;
    }
    
    @Bean
    public ConsumerFactory<Integer, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }
    
    @Bean
    public Map<String, Object> consumerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString());
        ...
        return props;
    }
}
@KafkaListener(id = "myListener", topics = "myTopic",
        autoStartup = "${listen.auto.start:true}", concurrency = "${listen.concurrency:3}")
public void listen(String data) {
    ...
}
2、批量处理
@Configuration
@EnableKafka
public class KafkaConfig {

    @Bean
public KafkaListenerContainerFactory<?, ?> batchFactory() {
    ConcurrentKafkaListenerContainerFactory<Integer, String> factory =
            new ConcurrentKafkaListenerContainerFactory<>();
    factory.setConsumerFactory(consumerFactory());
    factory.setBatchListener(true);  // <<<<<<<<<<<<<<<<<<<<<<<<<
    return factory;
}

    @Bean
    public ConsumerFactory<Integer, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }
    
    @Bean
    public Map<String, Object> consumerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString());
        ...
        return props;
    }
}
@KafkaListener(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list) {
    ...
}

3、同一个消费组支持单条和批量处理

场景:

生产上最初都采用单条消费模式,随着量的积累,部分topic常常出现消息积压,最开始通过新增消费者实例和分区来提升消费端的能力;一段时间后又开始出现消息积压,由此便从代码层面通过批量消费来提升消费能力。

只对部分topic做批量消费处理

简单的说就是需要配置批量消费和单条记录消费(从单条消费逐步向批量消费演进)

  • 假设最开始就是配置的单条消息处理的相关配置,原配置基本不变

  • 然后新配置 批量消息监听KafkaListenerContainerFactory

@Configuration
@EnableKafka
public class KafkaConfig {

    @Bean(name = [batchListenerContainerFactory])
public KafkaListenerContainerFactory<?, ?> batchFactory() {
    ConcurrentKafkaListenerContainerFactory<Integer, String> factory =
            new ConcurrentKafkaListenerContainerFactory<>();
    factory.setConsumerFactory(consumerFactory());
    // 开启批量处理
    factory.setBatchListener(true); 
    return factory;
}

    @Bean(name = [batchConsumerFactory])
    public ConsumerFactory<Integer, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }
    
    @Bean(name = [batchConsumerConfig])
    public Map<String, Object> consumerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString());
        ...
        return props;
    }
}

注意点:

  • 如果自定义的ContainerFactory其beanName不是kafkaListenerContainerFactory,spring会通过KafkaAnnotationDrivenConfiguration创建新的bean实例,所以需要注意的是你最终的@KafkaListener会使用到哪个ContainerFactory

  • 单条或在批量处理的ContainerFactory可以共存,默认会使用beanName为kafkaListenerContainerFactory的bean实例,因此你可以为batch container Factory实例指定不同的beanName,并在@KafkaListener使用的时候指定containerFactory即可

总结

  • spring为了将kafka融入其生态,方便在spring大环境下使用kafka,开发了spring-kafa这一模块,本质上是为了帮助开发者更好的以spring的方式使用kafka

  • @KafkaListener就是这么一个工具,在同一个项目中既可以有单条的消息处理,也可以配置多条的消息处理,稍微改变下配置即可实现,很是方便

  • 当然,@KafkaListener单条或者多条消息处理仍然是spring自行封装处理,与kafka-client客户端的拉取机制无关;比如一次性拉取50条消息,对于单条处理来说就是循环50次处理,而多条消息处理则可以一次性处理50条;本质上来说这套逻辑都是spring处理的,并不是说单条消费就是通过kafka-client一次只拉取一条消息

  • 在使用过程中需要注意spring自动的创建的一些bean实例,当然也可以覆盖其自动创建的实例以满足特定的需求场景

调试及相关源码版本:

  • org.springframework.boot::2.3.3.RELEASE

  • spring-kafka:2.5.4.RELEASE

-End-

最近有一些小伙伴,让我帮忙找一些 面试题 资料,于是我翻遍了收藏的 5T 资料后,汇总整理出来,可以说是程序员面试必备!所有资料都整理到网盘了,欢迎下载!

20f677ada0afbd482b50d47f30772ed0.png

点击👆卡片,关注后回复【面试题】即可获取

在看点这里351612cc3167d391ad67be75ab6f0c9f.gif好文分享给更多人↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值