DeepSeek作为生产力爆棚的AI工具,已经被用于各种办公场景,作为平时接触数据比较多的我来说,它其实是一个数据可视化的利器,能自主制作各种数据可视化图表,而且颜值还非常高。
当然,DeepSeek没办法直接生成并渲染图表,因为它只能生成文本代码,需要搭配python、mermaid、html来实现可视化。
不用担心,实现起来并不难,编程小白也能学会。
总体的实现流程如下,其中细节会在下面内容中详细讲解。
下面就7个常见的可视化场景,来具体讲讲如何用DeepSeek实现可视化,案例会包含详细的prompt以及数据。
统计图表 (搭配Matplotlib)
DeepSeek以推理能力著称,所以代码生成能力非常强悍,特别是Python这样的流行语言。
Python中的Matplotlib库是非常好用的可视化绘图工具,可以生成各种二维、三维统计图表,而且定制化程度高,支持配置任何你想要的图表形式。
用DeepSeek来生成Matplotlib图表是一种高效的绘图方式。
DeepSeek可以根据你的数据和可视化需求,自动生成相匹配的Python代码,然后在IDE中执行便可以获得专业美观的统计图表了。
以下是绘制统计图表的提示语模板,【】中是需要你填写的自定义内容,其他是模板内容。
请分析【上传或输入】的数据,使用Python的Matplotlib库绘制一个【图表类型】,体现【数据关系】,要求如下:
1、需保证Python代码准确可执行,务必检查不要有语法错误。
2、图表需包含标题、图例、刻度等完整的元素,且字体与图表大小要协调,可读性强。
图表需要专业、简洁、美观,符合现代审美,并确保中文能正常显示。
3、输出格式为Python代码,直接显示图表,并有相应的代码注释。不要有任何其他的解读内容。
4、【你的自定义要求,比如标题、标签、网格线等】
我用一个手机销售的数据集来测试,格式为CSV,需上传到DeepSeeK。
上传数据并提问:
DeepSeek回复如下代码(部分):
# 导入必要库
import matplotlib.pyplot as plt
import pandas as pd
# 设置中文字体防止乱码
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 示例数据构建(假设数据已正确读取为DataFrame)
# 根据用户提供的数据结构手动创建测试DataFrame
data = {
'月份': [1,1,2,2,3,3,4,4,5,5,6,6