(python)matplotlib可视化

11 篇文章 0 订阅
6 篇文章 0 订阅

在这里插入图片描述

import matplotlib.pyplot as plt

pyplot基础语法

  • 创建画布与创建子图
    第一部分主要作用是构建出一张空白的画布,并可选是否将画布分为多个部分,方便在一歌图画多个图形。可以省略,后默认的画布上画图。
函数名称函数作用
plt.figure创建空白画布,可以指定画布大小,像素
figure.add_subplot创建并选中子图,指定子图的行数列数与选中图片编号
  • 添加画布内容
    第二部分是画图的主体。其中 添加标题,左边名称,绘制图形的步骤是并列的,没有先后顺序。但是添加图例一定在绘制图形之后。
    在这里插入图片描述
  • 存与展示图形
    第三部分主要用于保存好人显示图片
    在这里插入图片描述

设置pyplot的动态rc属性

  1. pyplot使用rc配置文件来自定义各种默认属性,成为rc配置或rc参数
  2. 在pyplot中几乎所有的默认属性都是可以控制的,例如视图窗口大小以及每英寸点数、线条宽度、颜色和样式、坐标轴、坐标和网格属性、文本、字体等。

修改方式

plt.rcParams[“参数名”]="值"

线条常用rc参数名称解释与取值

在这里插入图片描述

  • 常用线条类型解释
    在这里插入图片描述

  • 线条标记解释
    在这里插入图片描述

  • 注意事项

    1. 中文显示
      由于默认的pyplot字体并不支持中文字符的显示,因此需要通过设置font.sans-serif参数改变绘图时的字体,使得图形可以正常显示中文。同时,由于更改字体后,会导致坐标轴中的部分字符无法显示,因此需要同时更改axes.unicode_minus参数。
plt.rcParams["font.sans-serif"] = "SimHei" ## 设置中文显示
plt.rcParams["axes.unicode_minus"] = False
  1. 除了设置线条和字体的rc参数外,还有设置文本、箱线图、坐标轴、刻度、图例、标记、图片、图像保存等rc参数。具体参数与取值可以参考官方文档。

绘图

绘制散点图

  • 概念
    散点图(scatter diagram)又称为散点分布图,是以一个特征为横坐标,另一个特征为纵坐标,利用坐标点(散点)的分布形态反映特征间的统计关系的一种图形。

    值是由点在图表中的位置表示,类别是由图表中的不同标记表示,通常用于比较跨类别的数据
    在这里插入图片描述

  • plot函数
    plt.plot(*args, **kwargs)
    参数不限长度,以下参数

参数名称说明
x, y接收array。表示x轴和y轴对应的数据。无默认
color接收特定string。指定线条颜色。默认None
linestyle接收特定string。制动线条类型,默认“-”
marker接收特定string。表示绘制点的类型,默认None
alpha接收0-1的小数,表示透明度,默认None

其中color有8中常用颜色缩写

颜色缩写颜色颜色缩写颜色
b蓝色m品红
g绿色y黄色
r红色k黑色
c青色w白色
data = np.load("./1.npz")
name = data["columns"]
values = data["values"]

plt.figure(figsize=(8,7))

plt.scatter(values[:,0],values[:,2],marker="o")
plt.xlabel("年份")
plt.ylabel("生产总值(医院)")
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title("2000-2017第一季度生产总值")
plt.show()

在这里插入图片描述

直方图

  • 概念
    直方图(Histogram)又称质量分布图,是统计报告图的一种,由一系列高度不等的纵向条纹或线段表示数据分布的情况,一般用横轴表示数据所属类别,纵轴表示数量或者占比。

    用直方图可以比较直观地看出产品质量特性的分布状态,便于判断其总体质量分布情况。直方图可以发现分布表无法发现的数据模式、样本的频率分布和总体的分布。
    不同标记表示,通常用于比较跨类别的数据

bar函数

plt.bar(left,height, width = 0.8, bottom=None, hold = None, data = None, **kwargs)

参数名称意义
left接收array,x轴数据
height接收array,表示x轴代表数据的数据量
width接收1-0之间的float,表示智立方的宽度
color接收颜色参数
import numpy as np
import matplotlib.pyplot as plt

plt.rcParams["font.sans-serif"] = "SimHei"  ## 设置中文显示
plt.rcParams["axes.unicode_minus"] = False
data = np.load("./1.npz")
name = data["columns"]
valuse = data["values"]
lab = ["第一产业", "第二产业", "第e三产业"]
plt.figure(figsize=(6, 5))
height = valuse[-1, 3:6]
plt.bar(range(3), height, width=0.4)
plt.xlabel("产业")
plt.ylabel("生产总值(医院)")
plt.xticks(range(3), lab)
plt.title("张长旭的做的:2017年第一季度各产业过敏生产总值直方图")
for i in range(len(height)):
    plt.text(i, height[i], height[i], va="bottom", ha="center")
plt.savefig("./2.png")
plt.show()

在这里插入图片描述

饼图

  • 概念
    饼图(Pie Graph)是将各项的大小与各项总和的比例显示在一张“饼”中,以“饼”的大小来确定每一项的占比。

    饼图可以比较清楚地反映出部分与部分、部分与整体之间的比例关系,易于显示每组数据相对于总数的大小,而且显现方式直观。

pie函数

plt.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None, … )

参数名称说明参数名称说明
x接收arrayautopct指定string,数值显示方式
explode接收array,表示指定项离饼图圆心为n个半径pctdistance接收float,指定每一项的比例和距饼图圆心多少个半径
labels接收array,指定每一项的名称labeldistance接收float指定每一项的名称和距饼图圆心多少个半径
color接收指定string,饼图的颜色radius接收float,表示饼的半径
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值