1. 全局解释锁
如题: Python 的多线程为什么不能利用多核处理器?
全局解释器锁 (Global Interpreter Lock) 是计算机程序设计语言解释器用于同步线程的一种机制,它使得任何时刻仅有一个线程在执行。
即便在多核处理器上,使用 GIL 的解释器也只允许同一时间执行一个线程,常见的使用 GIL 的解释器有 CPython 与 Ruby MRI。
可以看到 GIL 并不是 Python 独有的特性,是解释型语言处理多线程问题的一种机制而非语言特性。
2.Python 的解释器
Python 是一门解释器语言,代码通过解释器执行,Python 存在多种解释器,分别基于不同语言开发,每个解释器有不同的特点。
Python 程序的解释和执行过程简图:
- CPython
CPython 是主流版本的解释器,这个解释器是使用 C 语言编写的,也是使用最为广泛的解释器,可以方便地和 C/C++ 的类库进行交互,因此也是最受关注的解释器。
- Jython
一种由 java 语言编写的 python 解释器,是将 python 编译成 Java 字节码然后执行的一种解释器,可以方便地和 Java 的类库进行交互。
- IronPython
将 Python 代码解释为.Net 平台上运行的字节码进行执行,类似 Jython 解释器,可以方便的和.Net 平台上的类库进行交互。IPython
在交互效果上有所增强,但执行过程和功能方面和 CPython 是一样的。
- PyPy
一种使用 JIT (just-in-time) 技术的编译器,专注于执行速度,对 Python 代码进行动态编译,从而提高 Python 的执行速度。
PyPy 在处理 python 代码的过程中,一小部分功能的处理和 CPython 的执行结果是有差异的,如果项目中要使用 PyPy 来进行执行效率的提升的话,一定要事先了解下 PyPy 和 CPython 的区别。
3.CPython 的线程不安全
CPython 的线程是操作系统的原生线程,在 Linux 的 pthread 完全由操作系统调度执行。
pthread 本身不是线程安全的,需要使用者通过锁来实现多线程的安全运行,因此 CPython 解释器下的 Python 实现多线程也必然存在线程不安全的问题。
这就为 GIL 在多核时代的使用埋下了隐患。
4.GIL 产生背景和挑战
Python 是 Guido van Rossum 在 1989 年发布的,那个时候计算机的主频还没有达到 1G,程序全部都是运行在单核计算机上面,直到 2005 年多核处理器才被 Intel 开发出来。
Python 各版本发布时间轴:
4.1 多核化对软件系统的冲击
戈登・摩尔 1965 年预测,每个集成电路的元件数量每 18 到 24 个月就会翻一倍,它的适用性预计会持续到 2015-2020 年。
摩尔定律未失效前软件系统可以单纯借助硬件的进步来获得性能的提升或者只需少量改进,就可以坐享性能飞跃。
然而从 2005 年开始,时钟速率的增长和晶体管数量的增长已不再同步。
由于处理器材料的物理性质限制,时钟速率已停止增长甚至下降,处理器制造商开始将更多执行单元核心封装到单个芯片中。
这一趋势给应用程序开发和编程语言设计带来越来越大的压力。
程序员和编程语言决策者不得不考虑如何快速适应多核硬件,来提高软件性能和编程语言的市场占有率,Python 也不例外受到冲击。
4.2 多核化对 CPython 的冲击
在单核时代,崇尚优美、清晰、简单的吉多。范罗苏姆选择在解释器层面实现了一把全局互斥锁,来保护 Python 对象从而实现对单核 CPU 的使用率,这种做法在单核时代很奏效。
倘若在单核时未选择 GIL,那么开发者就需要自己实现任务的管理,这样做对于 CPU 的利用率提高无法做到极致。
图为 Python 之父吉多。范罗苏姆:
但是随着多核时代的到来,高效地利用 CPU 核心的有效方法就是使用并行性,多线程是充分实现并行的好方法,但是 CPython 的 GIL 却阻碍了对多核 CPU 的利用。
4.3 痛并快乐着的 GIL
CPython 的 GIL 给使用者带来了便利,并且在 GIL 的基础上开发了许多重要的 Package 和语言功能。
但是多核 CPU 的普适和其他语言对 Python 的冲击,让 GIL 显得原始而粗暴,无法有效利用多核处理器成为了弊端。
5. 多核时代 GIL 暴露的问题
要搞清楚 GIL 对多线程程序的影响就要了解 GIL 的运行基本原理。
- 单核 CPU 情况
CPython 的 Pthread 是通过操作系统调度算法调度执行。
Python 解释器每执行一定数量的字节码,或遇到系统 IO 时,会强制释放 GIL,然后触发一次操作系统的线程调度,实现单核 CPU 的充分利用,并且在单核上释放和重新执行的时间间隔非常短。
- 多核 CPU 情况
多核情况下多线程执行时,一个线程在 CPU-A 执行完之后释放 GIL,其他 CPU 上的线程都会进行竞争,但 CPU-A 可能又马上获取到了 GIL。
这就导致其他 CPU 上被唤醒的线程只能眼巴巴地看着 CPU-A 上的线程再次执行,而自己只能等待,直到又被切换到待调度的状态。
这就会产生多核 CPU 频繁进行线程切换,消耗着资源,但只有一个线程能够拿到 GIL 真正执行 Python 代码,这就导致多线程在多核 CPU 情况下,效率还不如单线程执行效率高。
这种情况非常类似于网络编程中的多个线程监听同一端口造成的惊群现象,只不过是 CPU 级别的,造成的浪费更加奢侈。
6.GIL 的实际影响
- I/O 密集型
在单核 CPU 上执行多线程时由解释器实现了有效的切换,这一点是很有益处的。
在 I/O 密集型的诸如网络爬虫等类型的程序即使使用 GIL 控制下的多线程程序性能也不会像你想象中那么糟糕。
- CPU 密集型
对于 CPU 密集型的计算类程序 GIL 就有比较大的问题,因为 CPU 密集型的程序本身没有太多等待,不需要解释器介入并且所有任务只能等待 1 个核心,其他核心空闲也无法使用,这么看对多核的使用确实很糟糕。
7. 抛弃和优化 GIL
GIL 一直备受争议,为此 PEP 也多次尝试删除或者优化 GIL,但是解释器本身的复杂性和众多 GIL 下的类库都让 GIL 移除成为遥不可及的想法。
- 移除 GIL
在 1999 年针对 Python 1.5,一个 free threading 补丁已经尝试实现了这个想法,该补丁来自 Greg Stein。
在这个补丁中,GIL 被完全的移除,且用细粒度的锁来代替。然而,GIL 的移除给单线程程序的执行速度带来了一定的代价。
当用单线程执行时,速度大约降低了 40%。使用两个线程展示出了在速度上的提高,但除了这个提高,这个收益并没有随着核数的增加而线性增长。由于执行速度的降低,这一补丁被拒绝了,并且几乎被人遗忘。
1999 年多核还是个幻想,但是在现今移除 GIL 也异常困难,真的移除效果如何也是未知的,只能说回头太难。
- 优化 GIL
2009 年 Antoine Pitrou 在 Python 3.2 中实现了一个新的 GIL,并且带着一些积极的结果。
这是 GIL 的一次最主要改变,旧的 GIL 通过对 Python 指令进行计数来确定何时放弃 GIL。
单条 Python 指令将会包含大量的工作,在新的 GIL 实现中,用一个固定的超时时间来指示当前的线程以放弃这个锁,使得线程间的切换更加可预测。
8.GIL 缺陷的解决方案
python 作为生命力极强的热门语言,绝对不会在多核时代坐以待毙。即便有 GIL 的限制,仍然有许多方法让程序拥抱多核。
- 多进程
Python2.6 引入了 MultiProcess 库来弥补 Threading 库中 GIL 带来的缺陷,基于此开发多进程程序,每个进程有单独的 GIL, 避免多进程之间对 GIL 的竞争,从而实现多核的利用,但是也带来一些同步和通信问题,这也是必然会出现的。
- Ctypes
CPython 的优势就是与 C 模块的结合,因此可以借助 Ctypes 调用 C 的动态库来实现将计算转移,C 动态库没有 GIL 可以实现对多核的利用。
- 协程
协程也是一个很好的手段,在 Python3.4 之前没有对协程的支持,存在一些三方库的实现,比如 gevent 和 Tornado。
Python3.4 之后就内置了 asyncio 标准库真正实现了协程这一特性。
9. 小结
GIL 仍然是 Python 语言里最困难的技术挑战,GIL 问题的并不是编程语言的本身问题,换做其他语言只是将问题转移到了用户层面,相反 Python 的作者尝试将这种问题转移到解释器给使用者呈现一个优雅的语言。
虽然多核时代的到来暴露了 GIL 的缺陷,但是 Python 决策者和社区开发者已经做出了许多其他措施来拥抱多核,无知地诟病 GIL 是不明智的做法。
如同生产关系要适应生产力的发展一样,抛开历史背景谈机制的优劣,都是有失偏颇的,所以对待 GIL 要辩证看待。
这里给大家分享一份Python全套学习资料,包括学习路线、软件、源码、视频、面试题等等,都是我自己学习时整理的,希望可以对正在学习或者想要学习Python的朋友有帮助!
CSDN大礼包:全网最全《全套Python学习资料》免费分享🎁
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
1️⃣零基础入门
① 学习路线
对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
② 路线对应学习视频
还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
③练习题
每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
因篇幅有限,仅展示部分资料
2️⃣国内外Python书籍、文档
① 文档和书籍资料
3️⃣Python工具包+项目源码合集
①Python工具包
学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
②Python实战案例
光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
③Python小游戏源码
如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
4️⃣Python面试题
我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
5️⃣Python兼职渠道
而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
上述所有资料 ⚡️ ,朋友们如果有需要 📦《全套Python学习资料》的,可以扫描下方二维码免费领取 🆓
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓