3个月零基础入门Python+数据分析,详细时间表+计划表分享

今天想给大家分享的是三个月零基础入门数据分析学习计划。有小伙伴可能会说,英语好像有点不太好,要怎么办?

所以今天我给大家分享的资源呢就是对国内的小伙伴很友好,还附赠大家一份三个月学习的计划表,大家只要按照我的计划表还有我的资料来,前提是大家必须严格遵照我的计划表,不可以偷懒哦。我的计划表就已经给大家安排了休息的时间,你只要跟着我的计划走三个月,保证你会学有所成,关于数据分析的学习笔记和学习资料,可以评论或私信我领取,那我们就开始吧。

excel学习

第一项学习内容呢是excel,大家不要觉得excel那么简单,谁不会啊,从小学的时候就开始用了,excel里有很多比较强大的功能,有些在数据分析里还是比较实用的,尤其是一些不是科技类的公司,他可能会倾向于就是用excel来做数据分析。所以我觉得这个作为学习的第一步是比较合适的,那么我推荐的资料呢是excel一千八百分钟视频教程大家可以去看。

大家不要觉得一千八百分钟好久,因为它是中文的,而且它的语速我听过是很慢的,所以大家一定要开二倍速,不然的话你可能会睡着,会影响学习效率。然后开二倍速的话其实只需要九天就可以学习完,就是一天如果只学两到三小时的话,所以这里我预期还给大家了两周,周末你还可以自己休息,你只要按照我这里的计划表,用九天的时间,然后每天按照我这里写的任务。因为这是一个视频集,所以它会分为十八集,所以大家只要每天学习两到三个小时,两周就可以学完。所以这是我们的第一步学习。

SQL数据库学习

第二步学习是sql,sql是数据库查询语言,所以它其实严格意义上不是一种编程语言,所以其实是很简单的。然后给大家找到的资料是数据分析sql数据库入门到精通,最简单易懂的小白必备教程。

十小时完整版,这是一个youtube上的视频,所以是英语讲的,但是这个up主把它翻译出了中文字幕,所以看起来没有压力,然后每天学两小时的话,只要五天,也就是一周就可以完成。

R语言学习

第三项学习是r语言,这个材料是r语言基础课程六讲,它的来源up主也在这里。然后这个六讲只有三小时,所以我们每天即使学习一个小时,按照这里三天就可以完成,所以大家按照这个时间表可以很轻松的完成。

Python学习

那学习完前三种的就可以学习python了,python我给大家前面总结过很全的学习资料,不过如果大家想要看重的材料呢,那我推荐的就是慕课网的北京理工大学出品的,是非常非常有名的课程。然后这个课程老师有自己的时间表,有自己的开课时间一共是八周。

所以这里我推荐他同一个系列的,北京理工大学的python数据分析与展示、python网络爬虫与信息体系这两门课大家可以根据自己的职业规划来选择你想学哪一门,或者是都学习。对于数据分析而言,以上四种学习就够了。

机器学习

但是如果是技术性比较强的呢,可能还需要学习一下机器学习。那我推荐的就是文达机器学习经典名课,中英文字母,机器学习的不二选择。它一共是二十个小时,所以每天如果学习两个小时的话,十天大家就可以学完。也可以根据我这里的时间表,大家每天按照这个任务来完成、来打卡就可以了。

关于我今天分享的材料呢,有一个缺点就是你没有办法真的去做一些练习题。我想说关于这些数据分析类的知识呢,你只是把它学到,从来不实际操作的话,它是没有用的。所以这种来源的学习资料的时候呢,我希望大家一定要跟着视频里老师如果做你就一样做,写excel,你就跟着老师一起来做,这样才能保证自己在学习的同时还可以得到练习。

​ 最后

为了帮助大家更好的学习Python,小编给大家准备了一份Python学习资料,里面的内容都是适合零基础小白的笔记和资料,不懂编程也能听懂、看懂,需要获取方式:点击这里【 Python全套资料】 即可获取。

CSDN大礼包:《Python开发全套学习笔记/实战项目/安装工具》免费分享

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。


​👉Python必备开发工具👈


👉精品Python学习书籍👈

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

温馨提示:篇幅有限,已打包文件夹,获取方式:点击这里【 Python全套资料】 即可获取。

CSDN大礼包:《Python开发全套学习笔记/实战项目/安装工具》免费分享

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

​​​👉100道Python练习题👈


👉面试刷题👈


​​​
👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉Python副业兼职与全职路线👈
在这里插入图片描述

​​​获取方式:点击这里【 Python全套资料】 或扫描下方即可获取。

CSDN大礼包:《Python开发全套学习笔记/实战项目/安装工具》免费分享

<think>好的,用户现在的问题是,他的论文题目是“基于深度学习的脑肿瘤图像分割方法及实现”,但他是零基础,想知道如何完成这个论文。首先,我需要回顾之前的对话历史,看看之前用户的情况是怎样的。 之前用户提到过,他目前只有初步想法,用PyTorch搭建U-Net模型,写了开题报告和文献综述,但还没有实际展开,实验结果也没出来。当时我给出的是一个分步骤的回答建议,帮助他在复试时如何回答导师的问题,突出研究思路、技术路线和后续规划。现在用户的问题更基础,是零基础如何完成这个论文,所以需要从头开始指导。 首先,用户现在是零基础,可能对深度学习、医学图像分割、U-Net模型等都不太了解。所以需要制定一个从基础到进阶的学习路径,帮助他逐步掌握所需的知识和技能。同时,论文的完成需要系统的步骤,包括文献调研、数据准备、模型构建、实验设计、结果分析等,这些都需要一步步来。 接下来,我需要考虑用户可能的深层需求。虽然用户直接问的是如何完成论文,但作为零基础的学生,他可能还缺乏方向感和具体步骤,甚至可能对如何开始学习编程和深度学习感到迷茫。因此,回答需要不仅提供步骤,还要给予学习资源推荐、时间规划建议,以及鼓励和建立信心。 我需要将整个完成论文的过程分解为几个阶段,每个阶段有明确的目标和任务。比如第一阶段是学习基础,第二阶段是文献调研,第三阶段是数据准备,第四阶段是模型搭建,第五阶段是实验与优化,第六阶段是论文写作。每个阶段下再细分具体的学习内容和任务。 同时,用户可能需要知道每个阶段需要多长时间,如何分配时间,以及遇到困难时该如何解决。比如在学习阶段,推荐一些在线课程或书籍,帮助他快速入门Python和PyTorch。在数据准备阶段,指导如何获取公开数据集,如何处理医学图像等。 另外,用户可能会担心自己零基础是否能够完成这样的论文,所以在回答中需要强调逐步推进的重要性,避免一开始就追求复杂的模型,而是从复现经典模型开始,逐步改进。同时,提供一些实际操作的例子,比如使用Brats数据集,使用U-Net作为基线模型,这些都能帮助用户具体化任务。 还需要提醒用户注意时间管理,合理分配每个阶段的时间,避免在某个环节卡住。同时,建议用户记录实验过程和结果,方便后续论文写作时的回溯和分析。 最后,要确保回答结构清晰,步骤明确,让用户能够按部就班地进行,同时给予信心,说明只要按计划学习,零基础也能完成论文。此外,可以补充一些常见问题的解决方法,比如遇到代码错误如何解决,如何查找文献等,增加实用性。</think>以下是针对零基础完成“基于深度学习的脑肿瘤图像分割论文”的系统指南,按步骤分解并附学习资源建议: --- ### **一、基础能力构建(1-2个)** #### 1. 深度学习基础 - **必学内容**: - Python编程(推荐《Python编程:从入门到实践》) - PyTorch框架(官方教程:https://pytorch.org/tutorials/) - 卷积神经网络(CNN)原理(吴恩达深度学习课程第4周) - **实践任务**: - 用PyTorch实现MNIST手写数字分类(代码示例:https://github.com/pytorch/examples/tree/main/mnist) #### 2. 医学图像基础 - **必学内容**: - MRI成像原理(推荐《医学影像处理与分析》第2章) - 脑肿瘤解剖结构(Brats数据集官网说明:https://www.med.upenn.edu/cbica/brats2023) - **工具掌握**: - 医学图像查看工具:ITK-SNAP(官网教程) - 数据格式转换:NiBabel库(处理.nii.gz文件) --- ### **二、文献调研方法(2-3周)** #### 1. 论文检索策略 - **关键检索词**: ```python ("brain tumor segmentation") AND ("U-Net" OR "attention" OR "multimodal") AND ("MRI") AND ("deep learning") ``` - **核心期刊/会议**: - 顶会:MICCAI, ISBI, CVPR-MIA - 期刊:IEEE TMI, Medical Image Analysis #### 2. 文献管理工具 - 使用Zotero管理文献,建立分类标签: ``` |-- 基础方法 | |-- U-Net变体 | |-- 注意力机制 |-- 医学应用 |-- 多模态融合 |-- 小样本学习 ``` --- ### **三、数据准备阶段(1个)** #### 1. 数据集获取 - **公开数据集**: - Brats 2023(含多模态MRI):https://www.synapse.org/brats2023 - TCGA-GBM(需申请):https://portal.gdc.cancer.gov/ - **预处理流程**: ```python # 示例代码框架 def preprocess(nii_path): img = nib.load(nii_path) # 加载nii文件 data = img.get_fdata() data = z_score_normalize(data) # 标准化 data = elastic_transform(data) # 弹性形变增强 return data ``` #### 2. 数据划分策略 - 采用5折交叉验证(避免小样本过拟合) - 病例级划分(同一患者的不同切片必须在同一fold) --- ### **四、模型实现路线(2-3)** #### 1. 基线模型搭建 - **U-Net复现步骤**: 1. 参考原论文架构图(https://arxiv.org/abs/1505.04597) 2. 使用PyTorch构建编码器-解码器结构 3. 添加跳跃连接(skip connection) - **代码框架**: ```python class UNet(nn.Module): def __init__(self): super().__init__() self.down1 = ConvBlock(4,64) # 输入通道=4(多模态) self.down2 = DownSample(64,128) # ... 中间层定义 self.up1 = UpSample(256,128) def forward(self, x): x1 = self.down1(x) x2 = self.down2(x1) # ... 下采样过程 return output ``` #### 2. 改进方案(选择1-2个方向) - **轻量化改进**: - 用深度可分离卷积替换常规卷积(减少参数量30%+) - 代码修改示例: ```python # 原卷积层 self.conv = nn.Conv2d(in_c, out_c, 3, padding=1) # 改进为 self.conv = nn.Sequential( nn.Conv2d(in_c, in_c, 3, groups=in_c, padding=1), # 深度卷积 nn.Conv2d(in_c, out_c, 1) # 逐点卷积 ) ``` - **性能提升改进**: - 在跳跃连接处添加注意力门控(AG-Net) - 参考代码:https://github.com/ozan-oktay/Attention-Gated-Networks --- ### **五、实验设计要点** #### 1. 评价指标选择 - **核心指标**: - Dice系数(肿瘤区域重叠度) - Hausdorff距离(边界贴合度) - 敏感度(小肿瘤检出率) - **计算示例**: ```python def dice_coeff(pred, target): intersection = (pred * target).sum() return (2. * intersection) / (pred.sum() + target.sum()) ``` #### 2. 对比实验设计 - **基线对比**: | 方法 | Dice(WT) | HD95(mm) | 参数量(M) | |-----------------|----------|----------|----------| | 经典U-Net | 0.78 | 8.2 | 31.0 | | 本文方法 | 0.83 | 6.1 | 28.5 | --- ### **六、论文写作规划** #### 1. 章节框架建议 ``` 第1章 引言(突出临床价值:脑肿瘤放疗靶区勾画需求) 第2章 相关工作(对比FCN、V-Net等方法的局限性) 第3章 方法(重点讲解改进模块的数学表达) 第4章 实验(消融实验+对比实验+临床医生评估) 第5章 结论(强调方法的泛化性:在XXX数据集上的迁移结果) ``` #### 2. 图表制作技巧 - 模型结构图:使用PowerPoint绘制(参考Nature期刊图示规范) - 结果可视化:用ITK-SNAP叠加预测结果与金标准 --- ### **七、时间管理建议** | 阶段 | 时间节点 | 交付物 | |--------------|------------|--------------------------| | 基础学习 | 第1-2个 | MNIST分类代码 | | 文献综述 | 第3 | 研究现状对比表格 | | 模型开发 | 第4-6个 | 消融实验数据 | | 论文撰写 | 第7-8个 | 初稿+图表 | | 修改完善 | 第9-10个 | 查重报告+实验补充 | --- ### **关键问题应对策略** 1. **代码报错**: - 优先查看PyTorch官方文档 - 在GitHub Issues中搜索同类问题(如:"size mismatch error U-Net") 2. **实验效果差**: - 检查数据预处理是否一致 - 尝试降低学习率(如从1e-3调整到1e-4) 3. **写作困难**: - 使用Overleaf模板(如:IEEE Access Latex模板) - 先完成图表再填充文字 --- 只要按照这个路线坚持推进,每天保持3小时有效学习时间,零基础完全可以在10-12个内完成论文。建议在GitHub建立私有仓库管理代码,用Notion记录每日进展。遇到具体技术问题时可再深入讨论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值