【不收藏就后悔!】Python精准学习内容,入门到精通爆肝整理128天

Python因其易学性和广泛应用而适合初学者,但要精通则需要深入学习算法、数据结构、框架和编程思想,并结合实际项目经验。文章提供了从基础到高级的129天学习计划,涵盖Python环境、模块、爬虫、Web开发、数据库操作、数据分析、机器学习和可视化等多个方面,强调理论与实践的结合,以及构建Web核心和人工智能-数据科学核心的知识体系。
摘要由CSDN通过智能技术生成

为什么说Python入门容易精通难?

Python应用领域广泛,没有具体的学习方向学完基础知识之后会很迷茫,应先确定好学习方向,按照这个学习方向建立学习路径规划。Python 非常适合初学者上手,相比较于其他主流编程语言其语言环境更接近自然语言,具备良好的可读性。

Python拥有简单形象直观的语法,有着众多的第三方库,封装了大多数的操作入门Python非常容易,且大多数学习Python都从爬虫开始趣味性也比较丰富;Python对于初学者入门非常简单,但进阶精通Python有一定难度。

学习Python分为初级、中级、高级级别

初级熟悉Python的基础语法规则,能够按照经验使用三方库的API,平常练练并没在实际项目中运用;中级熟练应用Python的基础语法,能够解决意外情况,可以看懂源码中的方法实现思路并在实际项目中应用;

高级针对实际项目中的问题,可追溯原因,且能够解决出现的问题;对一些常用方法原理、协议模型、编程思想、框架熟悉。

Python语言为开发工具,要掌握计算机原理、网络、Web前端、后端、架构、 数据库、项目部署、数据获取、数据提取、数据清洗、数据分析、数据挖掘、机器学习、深度学 习、图像识别等领域所需要的全部技术的前沿课程。

人工智能时代Python从业者应该搭建两大知识体系:

Web核心和人工智能-数据科学核心。掌握两大核心,搭建完整知识体系才是Python程序员职业发展的长期道路。

学习Python可以从爬虫开始、数据分析开始、人工智能开始入门,这些都只是Python的应用,并不代表Python这门编程语言,以为自己学得很深入其实只不过熟悉了一个工具而已。

精通Python要清楚什么是Python的核心?

一般来说Python的核心也是其他编程语言的核心:算法、数据结构;除此之外还有模式设计、框架思想、基础语法、内部机制、底层原理及实现;

Python进阶:

深入三方库源码、学习框架思想、注重基础语法在常用库中的运用,同时深入程序模式设计与应用,学习Python的常用机制与实现原理;

跳出对第三方库的API学习,更深入原理学习;不仅要知道某个库的某个方法的使用效果更要知道效果背后的实现逻辑。这些理论知识需要通过项目实战才能学以致用,真正做到精通。

推荐129天学习知识汇总

一、Python环境搭建及基础

第1天: Python环境搭建

第2天: Python基础语法

第3天: Python变量与数据类型

第4天: Python 流程控制

第5天: Python函数

第6天: Python 模块和包

第7天: Python 数据结构-序列

第8天: Python List

第9天: Python tupple

第10天: Python类与对象

第11天: Python 字典

第12天: Python 集合

第13天: Python 函数的参数

第14天: Python 高阶函数

第15天: Python输入输出

第16天: Python错误和异常

第17天: Python之引用

第18天: Python 之迭代器

第20天: Python 之装饰器

第22天: Python NameSpace & Scope

第23天: Python Standard L ibrary 01

第24天: Python Standard Lbrary 02

第25天: Python datetime和time

第111天: Python 垃圾回收机制

第115天Python 到底是值传递还是引用传递

第118天: Python 之对象的比较与拷贝

二、Python 模块

第26天: Python Os模块详解

第27天: Python shutil模块

第28天: Python sys模块详解

第29天: Python queue模块详解

第30天: Python collections模块

第31天: Python random模块

第32天: Python logging模块详解

第33天: Python 枚举

第34天: Python json&pickle

第35天: pathllb 模块

第36天: Python calendar 模块

第37天: Python math模块

第38天: Python declmal模块

第39天: Python itertools模块

第40天: Python statistics模块

第41天: Python operator模块

第42天: Python paramiko模块

第43天: Python filecmp&diffib模块

第48天:初识Python多线程

第49天: Python 多线程之threading模块

第50天: Python Queue进阶用法

第52天: Python multiprocessing模块

第53天: Python 线程池

第54天: Python 多线程Event

三、Python爬虫 基础文

第55天:爬虫介绍

第56天: Python 爬虫之urllib包基本使用

第57天: Python用户登录Flask-Login

第65天:爬虫利器Beautiful Soup之遍历文

第66天:爬虫利器Beautiful Soup之搜索文

第68天: Selenium 环境配置

第69天: Selenium详解

第70天: Python Scrapy爬虫框架及搭建

第71天: Python Scrapy项目实战

第72天: PySplder框 架的使用

第76天: Scrapy 模拟登陆

第129天:爬取微信公众号文章内容

第119天: Python 爬取豆瓣电影top 250

四、Python Web开发

第19天: Web开发Flask介绍

第21天: Web开发Jinja2模板引擎

第44天: Flask 框架集成Bootstrap

第45天: Web表单

第46天: Flask数据持久化

第47天: Web开发RESTful

第58天: Python Web开发Django简介

第59天: Python Django 模型概述与应用

第60天: Python Requests库的基本使用

第61天: Python Requests库高级用法

第62天: HTTP入门

第63天:正则表达式

第64天: XPath 和lxml

第67天: PyQuery 详解

第82天: Python Web开发之JWT简介

第87天: Python Web开发OAuth2.0简介

第88天: OAuth2.0客户端实战

第122天: Flask 单元测试

第123天: Web开发Django管理工具

第124天: Web开发Django模板

第104天: Python 解析XML

第125天: Flask 项目结构

五、Python 数据库操作

第73天: itchat微信机器人简介

第74天: Python newspaper框架

第75天: Python 操作Redis数据库介绍

第77天: Python 操作sQLite

第78天: Python 操作MongoDB效据库介绍

第80天: Python 操作MySQL

第86天: Python SQL Alchemy

六、Python 数据分析

第79天:数据分析之Numpy初步

第81天: NumPy Ndarray对象及数据类型

第83天: NumPy字符串操作

第84天: NumPy数学函数

第85天: NumPy 统计函故

第89天: NumPy 排序和筛选函数

第90天: NumPy 位运算与算术函数

第94天:数据分析之pandas初步

第109天: NumPy矩阵
第110天: Numpy中数组和矩阵的区别

七、Python 画图

第91天: Python matplotlb Introduction
第92天: Python Matplotib进阶操作

八、Python 办公

第93天:文件读写

第103天: Python 操作Excel

第105天: Python 操作Word

第107天: Python 解析PDF

第108天: Python 操作CSV

九、Python 机器学习

第95天: StringIO & BytesIO

第96天:图像库PIL (一

第97天图像库PIL (=)

第98天:图像库PIL实例一验证码去噪

第99天: TCP 编程

第100天: UDP编程

第101天: Python asyncio

第102天: Python异步之aiohttp

第106天:机器学习概览

第112天:机器学习算法之蒙特卡洛

第113天: Python XGBoost算法项目实战

第114天:三木板模型算法项目实战

第116天:机器学习算法之朴素贝叶斯理论

第117天:机器学习算法,之K近邻

第120天:机器学习算法之K均值聚类
第121天:机器学习之决策树

十、Python 可视化

第126天: Seaborn 可视化统计关系

第127天: Seaborn- 可视化分类数据

第128天: Seaborn 可视化数据集的分布

这里给大家分享一份Python全套学习资料,包括学习路线、软件、源码、视频、面试题等等,都是我自己学习时整理的,希望可以对正在学习或者想要学习Python的朋友有帮助!

CSDN大礼包:全网最全《全套Python学习资料》免费分享🎁

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

👉CSDN大礼包🎁:全网最全《Python学习资料》免费分享(安全链接,放心点击)👈

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述
因篇幅有限,仅展示部分资料

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

5️⃣Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
在这里插入图片描述
上述所有资料 ⚡️ ,朋友们如果有需要 📦《全套Python学习资料》的,可以扫描下方二维码免费领取 🆓
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

👉CSDN大礼包🎁:全网最全《Python学习资料》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值