Python内置方法的时间复杂度

Python内置方法的时间复杂度

本文转载自:http://www.orangecube.net/python-time-complexity

本页面涵盖了Python中若干方法的时间复杂度(或者叫“大欧”,“Big O”)。该时间复杂度的计算基于当前(译注:至少是2011年之前)的CPython实现。其他Python的实现(包括老版本或者尚在开发的CPython实现)可能会在性能表现上有些许小小的差异,但一般不超过一个O(log n)项。

本文中,n代表容器中元素的数量,k代表参数的值,或者参数的数量。

列表(List)

以完全随机的列表考虑平均情况。

列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque(双向队列)

操作平均情况最坏情况
复制O(n)O(n)
appendO(1)O(1)
插入O(n)O(n)
取元素O(1)O(1)
更改元素O(1)O(1)
删除元素O(n)O(n)
遍历O(n)O(n)
取切片O(k)O(k)
删除切片O(n)O(n)
更改切片O(k+n)O(k+n)
extendO(k)O(k)
排序O(n log n)O(n log n)
列表乘法O(nk)O(nk)
x in sO(n)
min(s),max(s)O(n)
计算长度O(1)O(1)
双向队列(collections.deque)

deque (double-ended queue,双向队列)是以双向链表的形式实现的 (Well, a list of arrays rather than objects, for greater efficiency)。双向队列的两端都是可达的,但从查找队列中间的元素较为缓慢,增删元素就更慢了。

操作平均情况最坏情况
复制O(n)O(n)
appendO(1)O(1)
appendleftO(1)O(1)
popO(1)O(1)
popleftO(1)O(1)
extend O(k)O(k)
extendleftO(k)O(k)
rotateO(k)O(k)
removeO(n)O(n)
集合(set)

未列出的操作可参考 dict —— 二者的实现非常相似。

操作平均情况最坏情况
x in sO(1)O(n)
并集 s丨tO(len(s)+len(t))
交集 s&tO(min(len(s), len(t))O(len(s) * len(t))
差集 s-tO(len(s))
s.difference_update(t)O(len(t))
对称差集 s^tO(len(s))O(len(s) * len(t))
s.symmetric_difference_update(t)O(len(t))O(len(t) * len(s))

由源码得知,求差集(s-t,或s.difference(t))运算与更新为差集(s.difference_uptate(t))运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。

集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。

字典(Dict)

下列字典的平均情况基于以下假设:
1. 对象的散列函数足够撸棒(robust),不会发生冲突。
2. 字典的键是从所有可能的键的集合中随机选择的。

小窍门:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。

操作平均情况最坏情况
复制O(n)O(n)
取元素O(1)O(n)
更改元素O(1)O(n)
删除元素O(1)O(n)
遍历O(n)O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值