AI时代下,产品经理的成长之路,零基础入门到精通,收藏这篇就够了

关注并将「产品中国」设为星标

关注产品、思考产品本质-产品经理聚集地

随着人工智能(AI)的快速发展,越来越多的行业开始引入AI技术,而作为连接用户与技术的桥梁,产品经理的角色也在这个AI时代发生了深刻的变化。AI不再只是技术领域的专属话题,它已经深度渗透到各类产品的设计、开发和运营中。这意味着产品经理不仅要具备传统的产品思维,还需要掌握AI相关的知识与工具,以便在这一变革时代中脱颖而出。

本文将探讨AI时代下产品经理的成长路径,结合具体的职业技能、方法论和实战经验,帮助新老产品经理明确成长方向,并为进入AI领域提供参考。

AI时代对产品经理的挑战与机遇

1. AI技术的应用:从概念到落地

AI技术近年来迅速普及,产品经理在开发和运营AI产品时,面临的最大挑战是如何将技术与用户需求有效结合。AI技术的应用不仅限于智能客服和个性化推荐等显性功能,更多的是如何在产品设计过程中,利用AI来提升用户体验,优化产品性能。

2. 数据驱动的决策方式

在传统产品开发中,决策往往基于市场调研和用户反馈,而在AI时代,产品经理需要具备数据驱动的决策能力。通过深度分析用户数据,产品经理能够更准确地预测用户行为,及时调整产品策略。AI产品经理需要熟悉各种数据分析工具,并懂得如何通过数据进行洞察,找到改进产品的机会点。

3. 跨学科的合作能力

AI产品经理的另一个重要能力是与跨学科团队的合作。AI产品的开发涉及数据科学家、算法工程师、前端后端开发人员等多种角色。产品经理不仅需要深刻理解技术背后的原理,还要能够将技术语言翻译成用户需求,推动团队协作,共同实现产品目标。

A****I产品经理的核心能力模型

在AI时代下,产品经理需要具备更广泛的技能。传统的产品经理技能体系包括用户研究、市场调研、产品规划、需求管理等,而AI产品经理则需要在此基础上掌握更多的数据、技术和商业方面的知识。

1. 人(Human):用户需求与AI结合

AI产品经理需要深入理解用户需求,确保产品能够为用户提供有价值的服务。通过用户画像、用户行为分析等手段,产品经理能够更加精准地设计符合用户期望的功能。此外,AI产品经理还需要掌握以用户为中心的设计思维,确保技术与用户体验之间找到平衡。

2. 商业(Business):从技术到商业价值的转换

AI产品的成功不仅取决于技术创新,更在于如何将技术转换为商业价值。AI产品经理必须理解公司的商业目标,将AI技术融入到产品战略中,实现可持续的盈利模式。优秀的AI产品经理需要平衡技术可行性与商业需求,确保产品既能满足市场需求,又具备足够的盈利潜力。

3. 技术(Technology):掌握AI技术的基本原理

虽然AI产品经理不需要像工程师那样精通代码,但他们必须理解AI技术的基本概念和原理,尤其是机器学习、深度学习、自然语言处理等核心技术。通过理解这些技术,产品经理可以与技术团队进行高效沟通,并推动项目顺利实施。

此外,产品经理还需要对AI技术的发展趋势保持敏感,及时更新自己的技术知识,以便做出前瞻性的产品决策。

AI时代下产品经理的成长路径

1. 培养基础的AI知识

对于想要进入AI领域的产品经理来说,首先需要掌握基本的AI知识。这包括学习机器学习算法、数据处理、模型评估等基础内容,了解常见的AI工具和框架(如TensorFlow、PyTorch等)。掌握这些技能能够帮助产品经理更好地与技术团队沟通,也为产品设计提供更多的技术可能性。

推荐书籍:《机器学习实战》、《Python数据科学手册》也可以来学习我们的AI产品在线课程:手把手教你做AI产品经理

2. 数据分析能力的提升

数据是AI产品的核心,因此产品经理必须具备强大的数据分析能力。具体来说,产品经理需要掌握业务数据分析、用户行为分析、转化漏斗分析等常用的分析工具和方法。通过数据分析,产品经理能够发现产品中的问题,并提出基于数据的解决方案。

此外,学习SQL、Excel、Python等数据分析工具,能够帮助产品经理更好地处理数据,并与数据科学家合作,优化产品功能。

3. 参与AI产品的实际开发

理论与实践的结合是产品经理成长的重要路径。参与AI产品的实际开发,不仅能够加深对技术的理解,还能提高解决实际问题的能力。产品经理可以通过参与AI项目的需求分析、产品设计、测试迭代等过程,积累实战经验。

例如,在智能推荐系统、语音助手、智能客服等项目中,产品经理可以从需求定义到上线运营的全流程中,锻炼自己的产品交付能力。

4. 跨学科合作与团队领导力

AI产品开发是一项跨学科的工作,产品经理需要协调多个团队的合作。在这一过程中,沟通能力和团队管理能力尤为重要。AI产品经理不仅要理解技术,还要能够清晰地向非技术人员解释AI技术的运作方式,确保团队对项目目标达成一致。

此外,AI产品经理还需要具备推动项目进展的领导力,在面对复杂的项目时,能够通过有效的沟通和协调,带领团队克服技术和业务上的挑战。

未来AI产品经理的趋势与展望

AI产品经理的未来发展充满了机遇与挑战。随着AI技术的不断进步,未来的产品经理需要更加多样化的技能组合。

1. AI+X:AI跨行业的融合

AI的应用不仅限于科技领域,它在金融、医疗、教育、制造等各个行业中都展现出了巨大的潜力。因此,未来的AI产品经理将面临更多的跨行业融合,这要求他们既懂AI技术,又能理解不同领域的行业知识。通过跨行业的融合,产品经理能够打造出更具竞争力的创新产品。

2. AI伦理与数据隐私的考量

随着AI技术的广泛应用,AI伦理和数据隐私成为了不可忽视的问题。AI产品经理需要在产品开发过程中,确保产品符合伦理规范和隐私保护要求。未来的AI产品经理不仅要考虑产品的功能和商业价值,还要关注其对社会的影响。

3. 持续学习与进化

AI技术日新月异,产品经理必须保持持续学习的心态,及时更新自己的知识体系。未来的AI产品经理需要更加灵活,能够快速适应技术变革,并在不同的技术场景下灵活应用AI技术。

总结

AI时代为产品经理带来了全新的挑战和机遇。作为产品经理,不仅要掌握传统的产品开发技能,还需要具备AI技术的基本知识、数据分析能力以及跨团队的协作能力。通过持续学习和实践,产品经理能够在这个变革的时代中不断成长,并为企业和用户带来更具价值的AI产品。

无论你是刚入行的产品新手,还是经验丰富的资深产品经理,在AI时代下都需要不断拓展自己的技能边界,才能在未来的竞争中立于不败之地。

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

2.大模型的优势

大模型最大的优势在于其强大的功能和广泛的应用。有时候,研究人员或开发者的需求不仅仅是快速的运行速度,而是能够处理复杂问题的能力。对于很多挑战性的任务,使用大模型能够大大减轻程序设计的负担,从而显著提高项目的质量。其易用性和灵活性也能让新手迅速上手。

虽然大模型在底层运算上可能不如一些特定的算法快速,但大模型清晰的结构和强大的能力能够解放开发者的大量时间,同时也能方便地与其他技术(如传统机器学习算法)结合使用。

因此,从来没有一种技术能够像大模型这样同时深入到这么多领域并且大模型支持跨平台操作,也支持开源,拥有丰富的预训练模型。尤其随着人工智能的持续火热,大模型 在学术界和工业界的关注度持续攀升,越来越多的技术爱好者、行业关注者也都开始学习和应用大模型。

3、大模型学习建议

在学习大模型的过程中,不要因为自己的基础薄弱或者之前没有接触过相关领域就想要放弃。记住,很多人在起跑线前就选择退出,但只要你沉下心来,愿意付出努力,就一定能够掌握。在学习的过程中,一定要亲自动手去实践,因为只有通过编写代码、实际操作,你才能够逐渐积累经验。

同时,遇到错误和挑战也是不可避免的,甚至可以说是学习的一部分。当你遇到错误时,学会利用各种资源去解决,比如搜索引擎、开源论坛、社区和学习群组,这些都是你提升学习能力的好帮手。如果实在找不到错误的解决办法,可以来公众号或者相关学习平台上寻求帮助。

接下来,我为你提供一份大模型学习路径的参考,包括:基础知识了解、理论学习、实践操作、专项深入、项目应用、拓展研究等步骤。你可以根据这个路径,结合自己的实际情况,制定合适的学习计划。
img
这里,我分享一些学习大模型的历程和技巧。我最初接触大模型是因为工作需要,那时大模型还没有像现在这样普及,资料也相对较少。但通过坚持学习,我也逐渐掌握了大模型的应用。以下是一些建议:

  • 先从了解大模型的基础知识开始,可以通过阅读相关书籍、学术论文或者参加在线课程。
    学习过程中不要只看理论知识,一定要动手实践。可以尝试使用一些开源的大模型框架,如TensorFlow、PyTorch等,进行实际操作。
  • 在掌握基础理论后,可以尝试参与一些实际项目,比如数据分析、自然语言处理、图像识别等,将理论应用到实践中。遇到问题时不要害怕,要学会利用网络资源、开源社区和专业论坛寻求帮助。
  • 不断深化学习,可以参加一些专业培训课程,或者深入研究最新的学术论文,保持对大模型领域的最新动态的了解。

学习路上没有捷径,只有坚持。但通过学习大模型,你可以不断提升自己的技术能力,开拓视野,甚至可能发现一些自己真正热爱的事业。最后,送给你一句话,希望能激励你在学习大模型的道路上不断前行:

If not now, when? If not me, who?
如果不是为了自己奋斗,又是为谁;如果不是现在奋斗,什么时候开始呢?

关于大模型技术储备

学好大模型不论是对就业还是开展副业赚钱都非常有利,但要想掌握大模型技术,还是需要有一个明确的学习规划。这里,我为大家分享一份完整的大模型学习资料,希望能帮助那些想要学习大模型的小伙伴们。

AI大模型入门基础教程
第1章 快速上手:人工智能演进与大模型崛起

1.1 从AI到AIOps
1.2 人工智能与通用人工智能
1.3 GPT模型的发展历程

第2章 大语言模型基础

2.1 Transformer 模型

  • 嵌入表示层
  • 注意力层
  • 前馈层
  • 残差连接与层归一化
  • 编码器和解码器结构

2.2 生成式预训练语言模型 GPT

  • 无监督预训练
  • 有监督下游任务微调
  • 基于 HuggingFace 的预训练语言模型实践

2.3 大语言模型结构

  • LLaMA 的模型结构
  • 注意力机制优化

    因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

第3章 大语言模型基础

3.1 数据来源

  • 通用数据
  • 专业数据

3.2 数据处理

  • 低质过滤
  • 冗余去除
  • 隐私消除
  • 词元切分

3.3 数据影响分析

  • 数据规模影响
  • 数据质量影响
  • 数据多样性影响

3.4 开源数据集合

  • Pile
  • ROOTS
  • RefinedWeb
  • SlimPajama


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

第4章 分布式训练

4.1 分布式训练概述
4.2 分布式训练并行策略

  • 数据并行
  • 模型并行
  • 混合并行
  • 计算设备内存优化

4.3 分布式训练的集群架构

  • 高性能计算集群硬件组成
  • 参数服务器架构
  • 去中心化架构

4.4 DeepSpeed 实践

  • 基础概念
  • LLaMA 分布式训练实践


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

第5章 有监督微调

5.1 提示学习和语境学习

  • 提示学习
  • 语境学习

5.2 高效模型微调

  • LoRA
  • LoRA 的变体

5.3 模型上下文窗口扩展

  • 具有外推能力的位置编码
  • 插值法

5.4 指令数据构建

  • 手动构建指令
  • 自动生成指令
  • 开源指令数据集

5.5 Deepspeed-Chat SFT 实践

  • 代码结构
  • 数据预处理
  • 自定义模型
  • 模型训练
  • 模型推
第6章 强化学习

6.1 基于人类反馈的强化学习
6.2 奖励模型
6.3 近端策略优化
6.4 MOSS-RLHF 实践

第7章 大语言模型应用

7.1 推理规划
7.2 综合应用框架
7.3 智能代理
7.4 多模态大模型
7.5 大语言模型推理优化

第8章 大语言模型评估

8.1 模型评估概述
8.2 大语言模型评估体系
8.3 大语言模型评估方法
8.4 大语言模型评估实践


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

总结

坚持到了这儿,恭喜你,表示你有做AI大模型工程师的潜力。其实我想说的上面的内容只是冰山一角,刚开始大家不需要多么精通了解这些内容。主要是不断练习,让自己跳出「舒适区」,进入「学习区」,但是又不进入「恐慌区」,不断给自己「喂招」。

记住,学习是一个持续的过程。大模型技术日新月异,每天都有新的研究成果和技术突破。要保持对知识的渴望,不断学习最新的技术和算法。同时,实践是检验学习成果的最佳方式。通过实际项目实践,你将能够将理论知识转化为实际能力,不断提升自己的技术实力。

最后,不要忘记与同行交流和学习。AI大模型领域有许多优秀的专家和社区,他们可以为你提供宝贵的指导和建议。参加技术交流会、阅读论文、加入专业论坛,这些都是提升自己技术水平的好方法。

祝愿你在AI大模型的学习之旅中取得丰硕的成果,开启属于你的AI大模型时代!

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

******************************************************************************************************************2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值