Python线程讲解

本文详细介绍了Python中的多线程,包括threading模块的使用,线程与进程的关系,多线程执行、线程执行代码的封装,以及同步、互斥锁、死锁的概念和避免方法。还探讨了线程安全、ThreadLocal和异步调用在多线程编程中的应用。

1.多线程threading

python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用

2.进程和线程的关系

线程是进程里面一种真正执行代码的东西,类似进程里面的箭头
进程是资源分配的单位,线程是cpu调度的单位
进程,能够完成多任务,比如 在一台电脑上能够同时运行多个QQ
线程,能够完成多任务,比如 一个QQ中的多个聊天窗口

定义的不同:

  • 进程是系统进行资源分配和调度的一个独立单位.
  • 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位
  • 线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈), 但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源

区别:

  • 一个程序至少有一个进程,一个进程至少有一个线程
    -线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高
    -进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率
    -线程不能够独立执行,必须依存在进程中

优缺点

  • 线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反

3.多线程执行

import threading
import time
 
def saySorry():
 
    print("Python才是最好的语言")
 
    time.
Python 中,`threading` 模块提供了用于多线程编程的接口,允许程序同时运行多个线程,从而提高程序的并发性。尽管 Python 的全局解释器锁(GIL)限制了同一时间只有一个线程执行 Python 字节码,但多线程仍然适用于 I/O 密集型任务,例如网络请求、文件读写等,因为这些任务在等待时可以释放 GIL,让其他线程运行。 ### 线程的基本工作原理 线程是操作系统调度的最小执行单元,一个进程可以包含多个线程,它们共享进程的内存空间和资源。Python 的 `threading` 模块封装了底层操作系统的线程管理,提供了跨平台的线程创建、启动和同步机制。 线程的生命周期包括以下几个状态:创建、就绪、运行、阻塞和终止。通过 `Thread` 类创建线程后,调用 `start()` 方法使其进入就绪状态,等待调度器分配 CPU 时间片执行。 ### 线程的创建与启动 通过 `threading.Thread` 类可以创建一个新的线程对象,指定目标函数和参数。以下是一个简单的线程创建和启动示例: ```python import threading def thread_job(): print(f'This is an added Thread, number is {threading.current_thread()}') def main(): added_thread = threading.Thread(target=thread_job) added_thread.start() print(f'Active thread count: {threading.active_count()}') print(f'Enumerate threads: {threading.enumerate()}') print(f'Current thread: {threading.current_thread()}') if __name__ == "__main__": main() ``` ### 线程的同步与 `join()` 方法 当主线程启动子线程后,默认情况下主线程不会等待子线程完成。为了确保主线程等待所有子线程执行完毕再继续执行,可以使用 `join()` 方法。例如: ```python import threading import time def thread_job(): print("T1 start") for i in range(10): time.sleep(0.1) print("T1 finish") def main(): added_thread = threading.Thread(target=thread_job, name="T1") added_thread.start() added_thread.join() print("all done") if __name__ == "__main__": main() ``` ### 多线程与性能对比 在 I/O 密集型任务中,多线程可以显著提高程序的执行效率。例如,在爬虫应用中,多个线程可以同时发起 HTTP 请求,而不是串行等待每个请求完成。以下是一个单线程多线程爬虫的性能对比示例: ```python import blog_spider import threading import time def single_thread(): print("single_thread begin") for url in blog_spider.urls: blog_spider.craw(url) print("single_thread end") def multi_thread(): print("multi_thread begin") threads = [] for url in blog_spider.urls: threads.append(threading.Thread(target=blog_spider.craw, args=(url,))) for thread in threads: thread.start() for thread in threads: thread.join() print("multi_thread end") if __name__ == '__main__': start = time.time() single_thread() end = time.time() print(f"single thread cost: {end - start}") start = time.time() multi_thread() end = time.time() print(f"multi thread cost: {end - start}") ``` ### 多线程与队列结合实现任务调度 在实际应用中,多线程常与 `Queue` 模块结合使用,实现线程安全的任务队列。以下是一个使用 `Queue` 实现多线程求和的示例: ```python import threading from queue import Queue import copy import time def job(l, q): res = sum(l) q.put(res) def multithreading(l): q = Queue() threads = [] for i in range(4): t = threading.Thread(target=job, args=(copy.copy(l), q), name=f'T{i}') t.start() threads.append(t) [t.join() for t in threads] total = 0 for _ in range(4): total += q.get() print(total) if __name__ == '__main__': l = list(range(1000000)) s_t = time.time() multithreading(l) print(f'multithreading: {time.time() - s_t}') ``` ### 相关问题 1. Python 中的全局解释器锁(GIL)如何影响多线程程序的性能? 2. 如何在 Python 中实现线程间的通信与数据共享? 3. 多线程与多进程在 Python 中的应用场景有何不同? 4. 如何在 Python 中避免线程安全问题? 5. Python 中 `daemon` 线程的作用是什么?如何设置? [^1] [^2] [^3] [^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值