前言: 业务压测时需要获取接口的响应数据并保存进行分析,当前是需要对id生成的结果进行是否重复性校验
一、模板图
二、正则匹配表达式提取器
正则提取器字段说明
- Apply to,是指你提取的变量要应用的范围,需要注意的是,Jmeter Variable是指应用到全局,也就是跨线程的。
- 要检查的响应字段,是指你的正则表达式的提取范围,主体应该是整个response,单选body就是指在body里找,其它选项根据字面意思,就不再赘述。
- 引用名称,是我们自定义的一个变量名称,也就是提取出来的值的变量名称,例如我给它定义为“var”,那么正则提取出来的值就存在var里,之后如果要用,就使用el表达式,也就是${var(刚刚定义的名称)}的方式来使用。
- 正则表达式,这里写提取变量用的正则表达式。
- 模板,这里是指你提取多少个变量(如果在正则表达式中有多个提取表达式),一般我们提取一个就够了,模板采用 N N N的方式,N代表数量,例如,我们设立一个只提取1个值的模板,就写作 1 1 1。
- 匹配数字,也就是提取匹配到的第几个值,例如写1就是从匹配到的值里选取第一个。
- 缺省值,也就是如果提取不到,那么默认给一个值替换提取结果。
配置结果
三、BeanShell 后置处理程序
FileWriter fstream = new FileWriter("/opt/a.txt",true);
BufferedWriter out = new BufferedWriter(fstream);
out.write(vars.get("number")+"\n");
out.close();
fstream.close();
四、文件去重处理
import pandas as pd
# 读取txt
train_data = pd.read_csv(r'C:\Users\MeetYou\Desktop\hah.txt',
sep=' ',
encoding='utf-8',
# index_col=0,
header=None)
# # 删除特定行(包含'hello'的行)
# train_data[train_data[0].apply(lambda x: 'hello' not in x)]
# 去重
train_data.drop_duplicates(inplace=True)
train_data.set_index(0, inplace=True)
# 写入txt
train_data.to_csv(r'C:\Users\MeetYou\Desktop\heh.txt',
sep=' ',
encoding='utf-8',
header=None)
校验去重前后文件的行数是否发生变化就行,如果要知道详细哪个字段重复了需要再研究下