本文是基于paddle paddle采用多层感知器实现手写数字识别问题。
#导入需要的包
import numpy as np
import paddle as paddle
import paddle.fluid as fluid
from PIL import Image
import matplotlib.pyplot as plt
import os
Step1:准备数据。
(1)数据集介绍
MNIST数据集包含60000个训练集和10000测试数据集。分为图片和标签,图片是28*28的灰度图像,标签为0~9共10个数字。
train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.mnist.train(),buf_size=512),batch_size=128)
test_reader = paddle.batch(paddle.dataset.mnist.test(),batch_size=128)
BATCH_SIZE = 128
Step2.网络配置
以下的代码判断就是定义一个简单的多层感知器,一共有三层,两个大小为100的隐层和一个大小为10的输出层,因为MNIST数据集是手写0到9的灰度图像,类别有10个,所以最后的输出大小是10。最后输出层的激活函数是Softmax,所以最后的输出层相当于一个分类器。加上一个输入层的话,多层感知器的结构是:输入层–>>隐层–>>隐层–>>输出层。
# 定义多层感知器
def multilayer_perceptron(input):
#请在此完成感知器模型定义
# 第一个全连接层,激活函数为ReLU
hidden1 = fluid.layers.fc(input=input, size=100, act='relu')
# 第二个全连接层,激活函数为ReLU
hidden2 = fluid.layers.fc(input=hidden1, size=100, act='relu')
# 以softmax为激活函数的全连接输出层,大小为10
prediction = fluid.layers.fc(input=hidden2, size=10, act='softmax')
return prediction
(2)定义数据层
输入的是图像数据。图像是2828的灰度图,所以输入的形状是[1, 28, 28],如果图像是32*32的彩色图,那么输入的形状是[3. 32, 32],因为灰度图只有一个通道,而彩色图有RGB三个通道。
# 定义输入输出层
image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')#单通道,28*28像素值
label = fluid.layers.data(name='label', shape=[1], dtype='int64') #图片标签
# 获取分类器
predict = multilayer_perceptron(image)
print(predict)
(4)定义损失函数和准确率
这次使用的是交叉熵损失函数,该函数在分类任务上比较常用。
定义了一个损失函数之后,还有对它求平均值,因为定义的是一个Batch的损失值。
同时我们还可以定义一个准确率函数,这个可以在我们训练的时候输出分类的准确率。
# 获取损失函数和准确率函数
cost = fluid.layers.cross_entropy(input=predict, label=label) #使用交叉熵损失函数,描述真实样本标签和预测概率之间的差值
avg_cost = fluid.layers.mean(cost)
acc = fluid.layers.accuracy(input=predict, label=label)
(5)定义优化方法
这次我们使用的是Adam优化方法,同时指定学习率为0.001
# 定义优化方法
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.004) #使用Adam算法进行优化
opts = optimizer.minimize(avg_cost)
在上述模型配置完毕后,得到两个fluid.Program:fluid.default_startup_program() 与fluid.default_main_program() 配置完毕了。
参数初始化操作会被写入fluid.default_startup_program()
fluid.default_main_program()用于获取默认或全局main program(主程序)。该主程序用于训练和测试模型。fluid.layers 中的所有layer函数可以向 default_main_program 中添加算子和变量。default_main_program 是fluid的许多编程接口(API)的Program参数的缺省值。例如,当用户program没有传入的时候, Executor.run() 会默认执行 default_main_program 。
Step3.模型训练 and Step4.模型评估
(1)创建Executor
首先定义运算场所 fluid.CPUPlace()和 fluid.CUDAPlace(0)分别表示运算场所为CPU和GPU
Executor:接收传入的program,通过run()方法运行program。
# 定义一个使用CPU的解析器
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
(2)定义数据映射器
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
(3)展示模型训练曲线
all_train_iter=0
all_train_iters=[]
all_train_costs=[]
all_train_accs=[]
def draw_train_process(title,iters,costs,accs,label_cost,lable_acc):
plt.title(title, fontsize=24)
plt.xlabel("iter", fontsize=20)
plt.ylabel("cost/acc", fontsize=20)
plt.plot(iters, costs,color='red',label=label_cost)
plt.plot(iters, accs,color='green',label=lable_acc)
plt.legend()
plt.grid()
plt.show()
(4)训练并保存模型
Executor接收传入的program,并根据feed map(输入映射表)和fetch_list(结果获取表) 向program中添加feed operators(数据输入算子)和fetch operators(结果获取算子)。
feed map为该program提供输入数据。fetch_list提供program训练结束后用户预期的变量。
EPOCH_NUM=10
model_save_dir = "/home/aistudio/data/hand.inference.model"
for pass_id in range(EPOCH_NUM):
# 进行训练
for batch_id, data in enumerate(train_reader()): #遍历train_reader
train_cost, train_acc = exe.run(program=fluid.default_main_program(),#运行主程序
feed=feeder.feed(data), #给模型喂入数据
fetch_list=[avg_cost, acc]) #fetch 误差、准确率
all_train_iter=all_train_iter+BATCH_SIZE
all_train_iters.append(all_train_iter)
all_train_costs.append(train_cost[0])
all_train_accs.append(train_acc[0])
# 每100个batch打印一次信息 误差、准确率
if batch_id % 100 == 0:
print('Pass:%d, Batch:%d, Cost:%0.5f, Accuracy:%0.5f' %
(pass_id, batch_id, train_cost[0], train_acc[0]))
# 进行测试
test_accs = []
test_costs = []
#每训练一轮 进行一次测试
for batch_id, data in enumerate(test_reader()): #遍历test_reader
test_cost, test_acc = exe.run(program=fluid.default_main_program(), #执行训练程序
feed=feeder.feed(data), #喂入数据
fetch_list=[avg_cost, acc]) #fetch 误差、准确率
test_accs.append(test_acc[0]) #每个batch的准确率
test_costs.append(test_cost[0]) #每个batch的误差
# 求测试结果的平均值
test_cost = (sum(test_costs) / len(test_costs)) #每轮的平均误差
test_acc = (sum(test_accs) / len(test_accs)) #每轮的平均准确率
print('Test:%d, Cost:%0.5f, Accuracy:%0.5f' % (pass_id, test_cost, test_acc))
#保存模型
# 如果保存路径不存在就创建
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
print ('save models to %s' % (model_save_dir))
fluid.io.save_inference_model(model_save_dir, #保存推理model的路径
['image'], #推理(inference)需要 feed 的数据
[predict], #保存推理(inference)结果的 Variables
exe) #executor 保存 inference model
draw_train_process("training",all_train_iters,all_train_costs,all_train_accs,"trainning cost","trainning acc")
Step5.模型预测
(1)图片预处理
在预测之前,要对图像进行预处理。
首先进行灰度化,然后压缩图像大小为28*28,接着将图像转换成一维向量,最后再对一维向量进行归一化处理。
def load_image(file):
im = Image.open(file).convert('L') #将RGB转化为灰度图像,L代表灰度图像,像素值在0~255之间
im = im.resize((28, 28), Image.ANTIALIAS) #resize image with high-quality 图像大小为28*28
im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)#返回新形状的数组,把它变成一个 numpy 数组以匹配数据馈送格式。
print(im)
im = im / 255.0 * 2.0 - 1.0 #归一化到【-1~1】之间
return im
(2)使用Matplotlib工具显示这张图像。
infer_path='data/data5435/infer_9.jpg'
img = Image.open(infer_path)
plt.imshow(img) #根据数组绘制图像
plt.show() #显示图像
(3)创建预测用Executer
infer_exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
#运行时中的所有变量都将分配给新的scope
with fluid.scope_guard(inference_scope):
#获取训练好的模型
#从指定目录中加载模型
[inference_program, #推理Program
feed_target_names, #是一个str列表,它包含需要在推理 Program 中提供数据的变量的名称。
fetch_targets] = fluid.io.load_inference_model(model_save_dir,#fetch_targets:是一个列表,从中我们可以得到推断结果。model_save_dir:模型保存的路径
infer_exe) #infer_exe: 运行 inference model的 executor
infer_path='data/data5435/infer_9.jpg'
img = load_image(infer_path)
results = infer_exe.run(program=inference_program, #运行推测程序
feed={feed_target_names[0]: img}, #喂入要预测的img
fetch_list=fetch_targets) #得到推测结果,
# 获取概率最大的label
lab = np.argsort(results) #argsort函数返回的是result数组值从小到大的索引值
# print(lab)
print("该图片的预测结果的label为: %d" % lab[0][0][-1]) #-1代表读取数组中倒数第一列
(4)开始预测
通过fluid.io.load_inference_model,预测器会从params_dirname中读取已经训练好的模型,来对从未遇见过的数据进行预测。