解锁FinSphere:金融科技领域的股票分析新利器

背景

在金融与科技深度融合的时代,大语言模型(LLMs)已成为金融领域的热门话题。它在情感分析、金融文本信息提取等方面成绩亮眼,但在股票分析这块关键领域,却存在明显短板。今天,我们深入剖析一篇论文,看看FinSphere如何突破困境,为股票分析带来全新变革。

当前LLMs在股票分析时,存在分析浮于表面、缺乏专业深度的问题,难以满足投资者对精准洞察的需求。同时,由于缺少客观评估标准,很难判断分析报告的质量优劣。为解决这些难题,研究团队带来了三项关键创新成果。

数据集

先看Stocksis数据集,它堪称提升LLMs股票分析能力的“宝藏”。这个数据集包含5000个精心整理的训练对,其中50对开源供大家研究使用。每个训练样本都精心设计,由两部分组成:一部分是带有背景信息的提示,这些提示整合了多个定量工具的输出结果,平均每个样本涉及六种工具,涵盖量价分析、技术指标、市场情绪等多方面数据,平均长度达4000字,为模型分析提供了丰富信息;另一部分是专家撰写的深度分析报告,平均每份报告3000字,详细解读数据背后的含义,展示如何依据各种定量指标进行专业分析。为保证数据质量,数据集的收集经过严格流程,先由专家分析师挑选合适工具生成定量分析作为背景信息,再据此撰写针对性提示,最后由10位资深股票分析师共同撰写分析报告,整个过程历时约三个月,确保每个训练对都精准、专业。

评估框架

再说说AnalyScore评估框架,它为衡量股票分析报告质量提供了可靠标准。该框架采用两级评估体系,先进行先验资格检查,从结论结构、逻辑一致性、事实支撑、数据时效性、分析维度、语言中立性这六个关键方面进行初步筛查,只有完全符合这些基本标准的报告,才能进入下一步详细评估。详细评估从结论、内容、表达、数据四个维度展开,总分100分。比如,结论维度主要考察投资建议是否清晰、是否有个性化;内容维度关注分析的专业性、深度以及逻辑连贯性;表达维度看结构组织是否合理、语言是否清晰;数据维度衡量数据运用的广度和深度。目前,该评估主要由人类专家执行,但研究团队计划后续通过设计特定提示,让LLMs能依据这个框架进行自动评估。

tXMWSO

FinSphere智能体

FinSphere智能体是此次研究的核心成果。它的一大优势在于整合了公司成熟的定量分析工具,这些工具与实时金融数据库相连。数据库涵盖了丰富的市场股票信息,不仅有股价走势、成交量、财务指标等结构化数据,还有公司公告、分析师报告、市场新闻等非结构化数据。当FinSphere需要进行分析时,会自动触发相应工具,工具从数据库获取最新数据,进行复杂计算,生成诸如技术指标分析、基本面估值、市场情绪评估等专业结果。

为了让模型更好地理解和处理这些专业分析结果,研究团队基于Stocksis数据集,运用LoRA(低秩适应)技术对Qwen2-72B模型进行指令微调。通过这种微调,模型学会了如何解读定量工具的输出,整合不同角度的分析观点,按照专业的分析模式生成结构清晰、内容详实的报告,同时还能保持模型原有的通用能力。

在实际工作流程中,FinSphere接到用户的股票分析请求后,会先运用思维链(CoT)推理方法,将复杂的分析任务拆解成一个个结构化的子任务,并确定每个子任务所需的定量工具。接着,这些选定的工具会独立从实时数据库获取相关数据,进行分析处理,生成反映当下市场情况的专业分析结果。最后,经过Stocksis数据集微调的模型会将这些分散的分析结果汇总,综合提炼,生成一份完整、高质量的股票分析报告,为用户提供全面、准确且贴合市场实际的投资建议。

效果

研究团队对FinSphere进行了严格的性能评估。实验对比了多种模型,包括常见的GPT-4o、GPT3.5等通用LLMs,Qwen2-72B等开源模型,InvestLM、FinGPT等领域特定模型,以及FinMem、FinRobot等基于智能体的系统。评估结果显示,在使用AnalyScore框架进行打分时,FinSphere在所有评估维度上都表现出色,总分为70.88分,远超其他模型。像GPT-4o得分66.61分,FinMem得分67.55分,而一些领域特定模型如FinGPT得分仅40.05分。此外,研究还进行了消融实验,探究训练数据规模对FinSphere性能的影响。结果发现,随着使用的Stocksis数据集比例增加,模型性能显著提升,从使用20%数据时的58.90分,提升到使用100%数据时的70.88分,而且数据量增加时性能提升幅度呈非线性增长,这表明充足的训练数据对模型发挥最佳性能至关重要,也证明了FinSphere框架具有良好的扩展性。

029vTK

FinSphere凭借创新的技术架构和精心设计的数据集、评估框架,在股票分析领域展现出强大的实力。它为投资者提供了更专业、精准的分析服务,推动了金融科技在股票分析方向的发展。不过,金融市场时刻变化,未来FinSphere还需不断优化升级,以适应复杂多变的市场环境,持续为投资者创造更大价值。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值