- 博客(1242)
- 收藏
- 关注
原创 美团大模型算法二面:Function Call三连炮!
随着DeepSeek爆火,面试中也越来越高频出现,因此训练营也更新了DeepSeek系列技术的深入拆解。包括MLA、MTP、专家负载均衡、FP8混合精度训练,Dual-Pipe等关键技术,力求做到全网最硬核的解析~
2025-05-24 09:55:14
411
原创 人工智能:AI大模型构建银行Agent全景应用
2024年11月,人民银行联合7部委印发了《推动数字金融高质量发展行动方案》,旨在通过金融数字化、智能化转型提高金融服务的便利性和竞争力。在金融数字化、智能化转型的发展大势下,金融机构数字化转型是不可避免的,不存在转不转的问题,必须坚定不移推进,积极探索与自身特点相适应的转型路径,实现自身的可持续发展。
2025-05-24 09:54:06
372
原创 AI“高情商”奥秘,LLM多轮情感对话新突破!
一句话概括,论文教你如何把ChatGPT调教成PUA大师:用强化学习给安慰话术标价,让每个'多喝热水'都经过长期回报精算
2025-05-23 21:58:05
570
原创 一个能够使用浏览器 + MCP + 自动化工具 + 任务规划 + 深入研究等的智能体框架:minion-agent
minion-agent是一款智能体框架,集成了浏览器操作、自动工具调用、任务规划和深度研究等功能,能够自动完成复杂任务,如生成分析报告和价格比较表,适用于科学研究、市场调研和个人助手等多种场景。
2025-05-23 21:53:19
409
原创 OpenTCM:基于GraphRAG的传统中医药知识检索与诊断问答图谱增强大模型系统 - 香港中文大学
这篇文章介绍了OpenTCM,一个基于图谱检索增强生成(GraphRAG)的大型语言模型(LLM)系统,用于传统中医(TCM)知识的检索和诊断。
2025-05-22 10:45:00
822
原创 MCP 和 Function Calling:概念
随着人工智能的快速发展,大型语言模型(LLMs)逐渐深入到我们生活与工作的各个方面。然而,尽管模型强大,但其能力仍存在局限性,比如在实时信息获取和复杂任务执行方面仍有不足。
2025-05-22 10:45:00
995
原创 MCP 和 Function Calling:示例
本文以实际例子来加深对 MCP 和 Function Calling 的理解。实现这样一个场景:和大模型聊天,然后让大模型将回答的内容总结后保存到 flomo 笔记中。
2025-05-21 10:45:00
1870
原创 基于dify开发一个数据可视化分析小助手
1、初始化设置环境变量(南瓜树中台能力接口)、上下文变量(整个对话中共享的变量)2、当上下文变量token为空时,调用登录能力获取token3、调用获取数据库能力接口,获取到权限内的所有数据库信息,并存储在上下文变量中4、根据用户问题,判断用户是需要做数据库信息的查询统计、库表信息的查询、还是sql语句的执行5、如果是需要查询数据库信息,则直接通过LLM节点,根据用户的问题将结果返回6、如果用户是需要对数据库表信息进行查询,则根据用户描述的问题,调用能力接口,获取到对应的库表字段信息和描述7、如果用户需要执
2025-05-21 10:45:00
612
原创 [News]大模型安全性:基于结构化语言的大模型越狱攻击方案QueryAttack被CCF A类会议ACL 25录用
大语言模型 (LLM) 的最新进展在自然语言处理领域展现出了巨大潜力。然而,LLM面临巨大的安全和伦理风险。尽管安全对齐等技术已广泛应用于大模型的安全防御,但依然无法解决大模型面临的安全风险。本文提出了QueryAttack框架,用于检验LLM安全对齐的泛化能力。我们将目标LLM视为知识库,通过自然语言的恶意查询转换为结构化的非自然语言,以绕过目标LLM的安全对齐机制。QueryAttack使用三个组件定义内容查询任务,以从目标 LLM 中诱导有害输出:
2025-05-20 10:39:30
714
原创 大模型开发理论与技术——大模型应用体系梳理,对大模型应用整体认识
大模型技术开发是一个复杂的领域,我们需要对其形成基础的认知体系,才能知道我们在做什么以及怎么做。
2025-05-20 10:38:38
796
原创 透过 Dify 集成看 MCP 的优点和局限
最近 MCP 火的一塌糊涂,似乎不拥抱就赶不上时代一样,然而我做了个服务测了下,似乎宣传>应用...
2025-05-20 10:01:36
700
原创 单卡4090上用最新LLaMA-Factory微调qwen3 最新模型
实测用最新的 LLaMA-Factory 项目 SFT 微调最新的 qwen3 模型,只需如下几步:(LLaMA-Factory 在5.1之前以第一时间完成了 Qwen3 的深层次优化,包括训练和推理逻辑)
2025-05-19 10:06:09
561
原创 LLM中的Token和Embedding到底是啥?
GPT4 Turbo 的上下文长度为 128K 个Tokens。Claude 2.1 的上下文长度为 200K 个Tokens。
2025-05-19 10:04:35
613
原创 从非结构化文本到互动知识图谱的构建:使用大语言模型(LLMs)
知识图谱提供了一种强大的方式来表示信息。它们由实体(节点)及其之间的关系(边)构成,使得信息的连接比单纯的非结构化文本更容易理解。
2025-05-19 10:01:35
903
原创 AI | 大模型入门:RAG数据库
大模型的知识主要是在预训练阶段学习的,更新大模型的固化知识是非常困难的,需要通过特定数据集的微调再训练实现。通过RAG实现私有知识库与私有化部署大模型相融合,就变得容易得多,但需要根据私有知识库的数据结构特点进行选型。
2025-05-19 09:59:51
896
原创 Qwen3 性价比新王 Qwen3-30B-A3B 本地私有化部署,可灵活切换思考模式
`Qwen3` 是 `Qwen` 系列大型语言模型的最新成员。该系列共包含`8`款模型,`2`款参数`30B`、`235B`的混合专家模型和`6`款参数`0.6B`、`1.7B`、`4B`、`8B`、`14B`、`32B`的稠密模型,每款模型均获得同尺寸开源模型的最佳性能。
2025-05-18 10:45:00
890
原创 小白学大模型:多模态 Qwen2.5-VL
Qwen-VL 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型性能强大,具备多语言对话、多图交错对话等能力,并支持中文开放域定位和细粒度图像识别与理解。
2025-05-17 10:45:00
678
原创 思考:Qwen3是如何实现混合推理(快慢思考)的?
其实混合推理模型已经有不少了,例如 Claude 3.7 Sonnet 和 Gemini 2.5 Flash,但 Qwen3 应该是开源且效果好的典例。未来这可能也是一个趋势,不需要特意区分普通模型和思考模型,而是同一个模型按需使用。
2025-05-16 15:47:18
883
原创 AI 友好架构:DevOps 平台 & 平台工程赋能 AI 自动编程 | 万字长文
上下文感知一直是 AI 辅助编程的核心要素之一。在模型不再是瓶颈的 2025 年里,如何获得当前任务所需要的**必要**上下文信息,将是 AI 助手能否成功的关键。AI 编程助手是通过 Workspace 与 编辑器/IDE 来构建工具,进而让模型获得相关的上下文。
2025-05-16 15:46:00
679
原创 拆解、对比与优化:LLM工具智能体的五种任务规划与执行模式
大语言模型(LLM)驱动的 AI 智能体,特别是在借助Tools(工具)来完成复杂任务执行的过程中展现出了巨大的潜力。然而,让智能体能够合理规划任务步骤与执行、避免盲目行动是确保其高效可靠完成目标的关键。本篇将探讨多种 **AI 智能体的任务规划与执行模式。包括:
2025-05-16 15:11:41
968
原创 深度对比流行开源智能体 Agent 框架:选择适合你的解决方案
我们都听说过 CrewAI 和 AutoGen,但你知道吗?现在市面上已经有数十个开源的智能体框架了,而且其中很多都是在过去一年内发布的。我对其中一些较为流行的框架进行了简单测试,以了解它们的工作原理以及上手难易程度。所以接下来我将依次介绍每个框架的特点和优势。
2025-05-16 15:09:08
962
原创 知识图谱+向量数据库:打造更智能的RAG系统
在当今AI时代,检索增强生成(RAG)已成为提升大语言模型回答质量的关键技术。本文将探讨如何结合知识图谱和向量数据库构建更智能的图RAG系统,让AI回答更准确、更可靠。
2025-05-15 13:53:43
1063
原创 Qwen3 低成本手撕Search-R1的强化学习训练框架
OpenAI-o1和DeepSeek-R1,通过奖励驱动的学习,而无需依赖于明确的逐步监督,在逻辑推理和迭代推理方面取得了显著的成果。
2025-05-14 11:14:58
629
原创 万字长文教你从零实现百万参数LLM训练
制作自己的大型语言模型(LLM)是一件很酷的事情,谷歌、Twitter 和 Facebook 等许多大公司都在这样做。他们会发布不同版本的模型,如 70 亿、130 亿或 700 亿。即使是较小的社区也在这样做。你可能读过关于创建自己的 LLM 的博客或看过相关视频,但它们通常只谈理论,对实际步骤和代码涉及不多。
2025-05-14 11:08:51
580
原创 langgraph:基于agent和qwen2.5构造一个多功能机器人,私有化部署
在这个例子中,我们将创建一个聊天机器人,帮助用户生成提示。它将首先从用户那里收集需求,然后生成提示(并根据用户输入对其进行细化)。这些被分为两个独立的状态,LLM决定何时在它们之间转换。系统的图形表示可以在下面找到。
2025-05-13 10:15:33
983
原创 LangGraph+MCP+Ollama:打造强大的多智能体聊天机器人
我将在本文教你如何使用 LangGraph、MCP 和 Ollama 打造一个多智能体(Multi-Agent)聊天机器人。
2025-05-13 10:12:04
573
原创 DeepSeek + LangGraph + Chat UI:轻松搭建本地智能助手
本文将介绍如何利用 **DeepSeek API**、**LangGraph** 和 **Agent Chat UI**,快速构建一个本地运行的智能助手。通过本文的指导,你将学会如何启动 LangGraph、部署 Agent Chat UI,并接入 DeepSeek API,最终打造一个功能强大且完全本地化的个人助手。无论你是开发者还是技术爱好者,都可以轻松上手,享受本地化智能助手带来的便利。
2025-05-13 10:10:22
665
原创 42.8K+ Star!MetaGPT:一个多智能体框架,模拟一个软件公司的运作,包括产品经理、架构师、项目经理和工程师等角色
**MetaGPT[1]** 是一个多智能体框架,通过自然语言编程来推动人工智能软件公司的发展。
2025-05-13 10:06:24
725
原创 RAG 实践- Ollama+RagFlow 部署本地知识库
上一篇我们介绍了如何利用 Ollama+AnythingLLM 来实践 RAG ,在本地部署一个知识库。借助大模型和 RAG 技术让我可以与本地私有的知识库文件实现自然语言的交互。
2025-05-12 20:54:14
970
原创 基于RAPTOR实现高质量长上下文的RAG
RAGFlow (https://github.com/infiniflow/ragflow) 在本周发布了 0.6 版本,解决了自开源以来在易用性,稳定性上等等面临的诸多问题。从下个版本开始,RAGFlow 将开始向 RAG 深层次演进。当下 RAG 仍然处于一个搭建 PoC 容易,但实际应用难的局面,这其中根本原因在于 RAG 本身面临诸多挑战,主要包括:
2025-05-12 20:51:16
711
原创 Ragflow技术栈分析及二次开发指南
Ragflow是目前团队化部署大模型+RAG的优质方案,不过其仍不适合直接部署使用,本文将从实际使用的角度,对其进行二次开发。
2025-05-11 10:45:00
592
原创 AI知识库:基于RAG技术的数据预处理方法探讨
在人工智能技术迅猛发展的当下,Retrieval-Augmented Generation(RAG,检索增强生成)凭借其将信息检索与文本生成相结合的独特优势,已成为企业和开发者构建智能应用的重要技术选择。然而,在实际应用过程中,许多开发者常常面临一个令人困扰的问题:明明采用了先进的RAG框架,生成的结果却时常出现"文不对题"或"逻辑混乱"的情况。经过深入分析发现,这些问题往往源于一个被忽视的关键环节——文档预处理的质量。本文将系统解析RAG技术的工作原理,揭示影响其性能的关键因素,并着重探讨如何通过优化文档
2025-05-10 10:05:27
600
原创 DeepSeek+RAG本地知识库搭建实战
本文介绍了如何系统学习大模型AI,分为四个阶段:初阶应用、高阶应用、模型训练和商业闭环。初阶阶段帮助理解大模型AI的基本概念和应用,高阶阶段则深入技术架构和开发框架,掌握私有知识库的构建。模型训练阶段教授如何微调和训练自己的大模型,而商业闭环阶段则关注大模型的部署和实际应用。文章强调,掌握AI技术将带来竞争优势,并提供了免费的学习资料,鼓励读者通过系统学习成为AI领域的专家。
2025-05-10 10:03:46
707
原创 大模型微调系列:如何让大模型成为领域专家?
大语言模型展现出强大的语言处理能力,但通用大模型在应对特定领域或任务时存在局限性。不少企业部署了 DeepSeek 大模型,却难以满足特定需求场景。
2025-05-09 15:02:09
860
原创 大模型三种微调Fine-tuning方式深度分析
**方式一: Prompt-tuning****什么是Prompt-tuning?****Prompt-tuning通过修政输入文本的提示(Prompt)来引导模型生成符合特定任务或情境的输出,而无需对模型的全量参数进行微调。**
2025-05-09 15:01:06
588
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人