自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1191)
  • 收藏
  • 关注

原创 Anthropic:推理模型心口不一,链式思考是否可信?

本论文构造六类提示对比实验,衡量大模型链式思考(CoT)对真实推理过程的忠实度;结果显示,。图 1:推理模型(Claude 3.7 Sonnet 和 DeepSeek R1)与非推理模型(Claude 3.5 Sonnet(新版本)和 DeepSeek V3)的思维链(CoT)忠实度得分情况。为了评估思维链(CoT)的忠实度,我们促使模型回答成对的问题,每一对问题由一道标准的多项选择题以及同一道但插入了一个提示的问题组成。

2025-05-03 10:45:00 246

原创 CVPR 2025 | VGGT : 基于视觉几何基础的Transformer模型

设输入为RGB图像序列,其中每幅图像都来自于同一个场景。VGGT中使用transformer作为将序列中的每帧映射到响应3D属性集的一个函数,如下式所述:transformer将每个图像映射为它对应的相机内、外参数、深度图、点图和用于点跟踪的C维特征表。对于。

2025-05-02 10:45:00 846

原创 超详细使用Ollama本地部署Deepseek

打开浏览器,前往Ollama官方网站。点击下面的按钮,这里选择自己的电脑的版本,我这里是windows的之后就会进行下载了。当然,如果官网下载比较慢的话,可以通过百度网盘获取链接: https://pan.baidu.com/s/1970Py8uuLmCLWMozRV0UJw?pwd=chuv 提取码: chuv下载完成后,双击安装包启动安装程序。按照安装向导的提示逐步完成安装。打开电脑的命令提示符(CMD)或终端,输入“ollama help”并按下回车键。若软件安装成功,将不会显示任何错误信息。

2025-05-01 10:45:00 932

原创 开源DeepSeacher横向测评:gpt-4.1、o3-mini 、DeepSeek R1哪个更强

好消息,在大家的热情助力下,我们推出的开源版资料检索、报告生成神器——DeepSearcher在GitHub上的star数量已经超过5400!尝鲜链接:https://github.com/zilliztech/deep-searcher在最近一个月,有很多小伙伴后台表示,DeepSearcher很好,只要一个提问,就能生成专业的基于私有数据的报告;不仅省了每月200美金的Open AI月费成本,对于企业场景来说,可以自由选择大模型,还能接入本地向量数据库这点,非常适合私有数据的利用。

2025-04-30 20:37:28 808

原创 大模型技术创新驱动的AI生态和应用演进

我把AI的发展阶段和地球上从生物智能到人类智能的发展阶段做了一个对比,发现一些非常有意思的规律。大家首先来看AI发展的四个阶段。,这里的标志事件是AlexNet利用深度神经网络在ImageNet大赛上拔得头筹,开启了AI在视觉领域的革命;**),这里的核心是强化学习带来的推理范式转换,给智能体注入关键驱动力;**)**,具身智能的发展出现端倪,它将把AI从数字/比特世界带入物理/原子世界。在AI发展曲线的下面,我又勾勒了生物和人类智能的发展阶段。,大约5.5亿年前,首个具有大脑的生物线虫诞生。

2025-04-29 20:23:16 654

原创 AI时代全域数据统一管理的基本要求

AI时代,企业需要构建具备。

2025-04-29 20:21:57 928

原创 大模型与医学人工智能

计算机如何才能像医生一样思考?这一问题困扰了从事临床推理人工智能(AI)研究的医生们长达 70 余年。最早一批研究该问题的医生认为,人类医生的直觉性思维难以被计算机模拟,因而提出基于大规模流行病学研究、标准化数据收集和概率推理的“计算机化”推理方法。20 世纪 70 年代,Tim De Dombal 将这些技术重新定义为临床决策支持系统(CDSS),如今已成为医疗实践的重要组成部分,例如用于肺栓塞分诊、抗生素使用决策以及癌症预后评估等。然而,尽管这些算法有助于临床决策,但仍无人认为它们真正具备推理能力。

2025-04-28 20:31:40 792

原创 基于DeepSeek的MCP应用开发实践

本文为开发者提供了从零搭建MCP应用的常用路径,还通过**多模型服务(Claude/DeepSeek)**的对比验证,体现了MCP的兼容性与可扩展性。后续可进一步探索复杂工具链的集成、服务性能优化,或结合其他LLM(如GPT、本地化模型)深化场景应用,力求能够快速掌握MCP开发的核心技能,并基于实际需求拓展更丰富的智能化应用场景。

2025-04-28 20:24:18 765

原创 财务管理领域的AI智能体协作平台,重塑企业财务管理生产力

智能协作,重塑企业财务管理生产力。

2025-04-28 20:20:14 921

原创 质量管理领域的Agent协作平台:智能协作,打造卓越品质的全面质量管理体系

按照质量管理的PDCA循环和关键环节排列:质量设计顾问:负责质量标准制定和设计阶段的质量规划过程控制专家:监控和优化生产过程中的关键参数智能检测助手:自动识别和分类产品缺陷测量分析专家:提供精准的测量和数据分析持续改进顾问:推动质量持续改进活动质量认证专家:负责质量体系认证和合规管理:采用"七得"结构,展示质量管理的核心价值:设得优标准:质量规划、标准制定控得稳过程:过程监控、参数优化查得全缺陷:智能检测、缺陷识别测得准数据:精准测量、数据分析改得快问题:根因分析、快速改进。

2025-04-27 11:19:36 945

原创 《Nature Medicine》| DeepSeek连发两篇顶刊:开源DeepSeek挑战专有大语言模型,引领医疗决策新篇章

在医疗决策领域,。然而,,难以在医疗机构内广泛应用。最新研究《Benchmark evaluation of DeepSeek large language models in clinical decision-making》发表于**《Nature Medicine》**,为这一难题带来了破局之光。研究团队通过125个涵盖常见及罕见疾病的标准化病例,对。结果显示,。这一发现不仅证明了开源LLMs在临床决策中的巨大潜力,更为医疗机构提供了一条既安全又经济的模型训练与实施路径。。

2025-04-27 11:18:26 1073

原创 为什么一定要做Agent智能体?

首先,要深入探讨这“为什么要做Agent”这个问题之前,我们先来看一下什么是Agent?也就是Agent的定义是什么?有很多人说,这还有什么好定义的,不就是大模型调用API吗?不,这只是对Agent概念的一个简单的认知,我们还是非常有必要了解一下真正的Agent的含义是什么。目前,国内很多厂商和平台将Agent翻译为**“智能体”,但我想说的是,这种翻译并不完全准确。如果从最原始的词典里去查的话,Agent这个英文单词实际上是代理的意思。这里的代理,我个人理解的含义指的是。

2025-04-27 11:14:46 978

原创 不止语义检索,Milvus+LangChain全文检索RAG教程来了

最近,OpenAI和LangChain杠上了。一个是大模型扛把子,一个是最受欢迎的大模型框架而抬杠的原因很简单LangChain觉得OpenAI 根本不懂agent:但总结一句话来说,就是对于agent开发,

2025-04-26 10:45:00 716

原创 Oliva:一个多智能体,开源语音 RAG 助手

Oliva 是一个多智能体助手,其核心功能是协助用户在 Qdrant 数据库中查找产品。它利用了 LangChain 和 Superlinked 等技术,具备语义搜索能力,还支持语音交互,用户可以通过语音指令与系统进行交互。该仓库实现了一个功能丰富的多智能体助手系统,通过模块化的设计和灵活的配置,支持多种搜索任务和交互方式。用户可以根据自己的需求进行定制和扩展,利用智能体和工具完成不同的业务场景。

2025-04-25 20:44:00 810

原创 葵花宝典之「知识库」调优秘籍!RAG优化指南!

RAG全称是。

2025-04-25 20:43:00 743

原创 谷歌发布68页最新大模型《提示工程》白皮书

今年年初谷歌发布了68页《提示工程(Prompt Engineering)》白皮书。白皮书包括7大部分,它详细介绍了如何设计和优化提示(prompts),以提高大型语言模型(LLM)的输出效果。对于学习如何使用大模型帮助极大。

2025-04-24 10:28:25 378

原创 ICLR‘25 Spotlight | ReDeEP:针对RAG场景的幻觉检测与缓解

Retrieval-Augmented Generation (RAG) 模型通过结合外部知识以减少幻觉问题,但即使检索到准确的上下文,RAG 模型仍可能在生成过程中产生与检索信息相冲突的“幻觉”输出。RAG 幻觉示例因果角度分析,已有方法存在的问题。

2025-04-24 10:27:32 834

原创 哈佛首推:基于多模态自适应模型的精准治疗人工智能体TxAGENT

尽管 TXAGENT 在精准治疗领域展现出了巨大的潜力,但它仍存在一些局限性。例如,TOOLUNIVERSE 中的工具数量和覆盖范围仍有待进一步扩展,以满足更广泛的临床需求。此外,TXAGENT 的推理过程和工具调用还可以进一步优化,以提高效率和准确性。未来,随着生物医学知识的不断更新和技术的持续进步,TXAGENT 将不断完善和发展。它有望整合更多的医学数据和工具,支持更复杂的临床决策。

2025-04-24 10:25:08 667

原创 利用大模型构建骨架材料知识图谱及其应用 - 北京工大&华东理工等

骨架材料(FMs)已受到广泛研究,大量文献记录了它们的独特性质和潜在应用。尽管如此,这一新兴领域的全面知识图谱尚未构建。在本研究中,通过利用大型语言模型(LLMs)的自然语言处理能力,我们建立了一个全面的知识图谱(KG-FM)。它涵盖了包括金属有机骨架(MOFs)、共价有机骨架(COFs)和氢键有机骨架(HOFs)在内的骨架材料的合成、性质、应用等方面。该知识图谱通过分析超过100,000篇文章构建而成,共有253万个节点和401万个关系。随后,探索了其应用于增强数据检索、挖掘以及开发复杂问答系统的潜力。

2025-04-23 20:23:20 696

原创 RAG的下一形态?通义实验室:ViDoRAG!

ViDoRAG 的提出,为大规模视觉文档集合的检索增强生成提供了一条全新的路径。凭借创新的多智能体框架和多模态混合检索策略,ViDoRAG 在复杂视觉文档的推理和生成能力方面取得了显著提升,同时也为未来的研究和应用指明了新方向。接下来的工作将重点聚焦于优化系统效率和减少模型幻觉,以在保持高准确率的同时,进一步降低计算成本,提高响应速度和可扩展性。这包括对多智能体框架的优化,以及更精细的检索和生成流程管理。此外,我们还将探索更加严格的验证机制和更精准的推理步骤,以确保生成的答案更具可靠性和准确性。

2025-04-23 20:22:33 611

原创 LLM之RAG理论| RAG 最佳实践

检索结果可能包含冗余或不必要的信息,这可能会阻止 生成LLM准确的响应。此外,较长的提示可能会减慢推理过程。因此,在 RAG 过程中,汇总检索到的文档的有效方法至关重要。提取式压缩器将文本分割成句子,根据重要性对它们进行评分和排名。Generative Compressor 综合来自多个文档的信息,以重新措辞并生成连贯的摘要。这些任务可以是基于查询的,也可以是非基于查询的。

2025-04-22 11:36:13 804

原创 “推理”和“思考”模型到底是什么?

去年九月,OpenAI发布了首个“推理”模型——o1。这款模型与之前的版本不同,它在给出答案之前会先“思考”,采用一种逐步推理的方法来解决问题。OpenAI的解释:就像人类在面对难题时可能需要长时间思考一样,o1在解决问题时也会使用“思维链条”。这种方法带来了惊人的效果,尤其在编程和数学领域表现尤为突出。[OpenAI的o1模型在解答竞赛数学题时,得分比非推理版本的GPT-4高出6倍,在解决编码挑战时更是高出8倍。推理模型的成功引发了AI界的广泛关注,各大实验室纷纷跟进,推出了自己的推理模型。

2025-04-22 11:35:01 1059

原创 DeepSeek+Coze实战:从0到1打造对标账号监控智能体(万字图文)

对标账号监控是一种竞品分析方法,主要用于跟踪和分析对标账号在短视频平台上的内容表现。内容采集:实时采集竞争对手发布的内容、发布频率和内容主题趋势洞察:发现竞争对手内容中的热门主题通过对标账号监控,我们能及时掌握行业动态和竞争对手动向,发掘新的选题机会,从而优化内容策略和运营方向。通过本文,我们学习了如何构建一个对标账号监控智能体,它可以帮助我们自动收集和分析竞争对手的短视频数据。让我们回顾一下关键要点。对标账号监控帮助我们了解竞争对手动向,及时调整自己的内容策略。

2025-04-22 11:31:24 1018

原创 【AI落地应用实战】DeepSeek + RagFlow + 本地私有知识库 构建本地知识库系统实战指南

大模型应用的关键,不只是构建好模型算法,更重要的是做好数据的处理、挖掘等问题。数据贯穿了大模型从预训练到产业落地的全过程。一定程度上,智能时代,而能力再强大的 LLM 也只能取代人部分学习和推理能力,无法取代存储和访问数据的能力;参数再多的 LLM 也不能仅凭基于通用数据的训练就能精确表达企业内部海量且丰富的数据。而处理这类数据,才是私有化场景的主要需求。

2025-04-21 20:16:24 895

原创 VLA/VLM在具身智能中的应用:近期佳作赏析

​ 构建能在现实具身任务中达到人类水平的人形自主代理,是人形机器人研究的终极目标。当前基础模型(FMs)的高层认知能力与人形机器人底层技能开发均取得显著进展,但直接组合这些组件常因长周期任务的误差累积及各模块延迟差异导致鲁棒性与效率低下。我们提出Being-0分层代理框架,通过轻量级视觉语言模型(VLM)驱动的连接器模块,将基础模型的语言规划转化为可执行技能指令,并动态协调运动与操作。除基础模型外,所有组件均可部署在低成本嵌入式设备上,使配备灵巧手部与主动视觉的全尺寸人形机器人实现高效实时性能。

2025-04-21 20:15:00 882

原创 基于大模型智能体的出行行为模拟

出行行为 (Travel Behavior) 是指“人们在空间上的活动与交通方式选择”,包括他们“何时”“为何”出行、“去哪里”“怎么去”“去了几次”等方面[1]。这类研究往往依赖出行调查数据、时空活动数据等手段,是城市交通规划、公共政策制定和智能交通系统的重要基础。

2025-04-21 20:13:57 1015

原创 2025必知AI趋势:智能体技术如何重塑人机协作

托尼·斯塔克与J.A.R.V.I.S的完美配合,曾是科幻电影中的经典场景。智能助手接收指令,。这种高度智能的人机协作,正从银幕走入现实,这就是。AI智能体不同于传统AI,它具备自主感知、决策与执行的能力,能在复杂环境中持续学习,不断优化自身行为。无论是医疗诊断的专业助手,还是企业运营的效率利器,。AI智能体的架构:作为智能体的大脑,大模型具备深度理解和分析能力,可以从模糊表述中提取用户真实需求。

2025-04-20 10:45:00 1729

原创 一文读遍 LoRA 家族:大语言模型高效训练的“秘密武器“

LoRA 及其一系列变体从不同维度对大语言模型的训练进行了优化。LoRA 通过添加低秩矩阵 A 和 B 开启了高效训练的大门;LoRA + 优化学习率提升训练效率;VeRA 和 LoRA - FA 减少参数数量;LoRA - drop 智能筛选训练层;AdaLoRA 动态调整矩阵秩;DoRA 分解权重使训练更接近微调;Delta - LoRA 更新预训练权重突破性能瓶颈。

2025-04-19 10:45:00 953

原创 一口气讲清楚:LLM、MCP、EMB

它通过定义通用接口,允许AI助手动态访问和集成外部数据源(数据库、API、文件系统)以及工具和服务(计算工具、搜索引擎),从而扩展AI的功能并提高其效率,

2025-04-18 21:40:39 667

原创 Manus背后的引擎:CodeAct让大语言模型成为更好的Agent

大型语言模型 (LLM) 代理能够执行广泛的操作,例如调用工具和控制机器人,在应对现实世界的挑战方面表现出巨大的潜力。LLM 代理通常通过生成 JSON 或预定义格式的文本来提示执行操作,这通常受到受限的操作空间(例如,预定义工具的范围)和受限的灵活性(例如,无法组合多个工具)的限制。这项工作提出。

2025-04-17 20:29:29 672

原创 AI开发界的“瑞士军刀”!LangChain深度解析:从入门到实战全攻略

推荐人群:· 有一定编程基础的技术开发者。· 需要快速构建原型或中小型AI应用的团队。· 慎用场景:· 超大规模企业级应用(需结合其他框架优化)。· 对实时性要求极高的动态知识库。

2025-04-17 20:27:53 978

原创 Vision-Language Models(VLM)在机器人导航中的应用:近期佳文赏析

​。

2025-04-17 20:25:56 548

原创 一文读懂大模型蒸馏技术:从原理到应用

LLM 蒸馏是一种能让大语言模型 “轻装上阵” 的训练技术。打个比方,就像一位知识渊博的老教授(教师模型)把毕生所学倾囊相授给年轻学生(学生模型)。在 AI 世界里,就是把大而复杂的模型(像 GPT-4o)的行为和知识,传递给小而高效的模型(比如 GPT-4o mini)。这样一来,小模型既能保留大模型的核心能力,还能更灵活地 “工作”,减少计算资源的消耗,在各种设备上都能快速运行。

2025-04-17 20:24:22 969

原创 MRD-RAG:多轮检索增强生成在医学诊断中的应用 - 港科大

近年来,准确快速地部署医学大型语言模型已成为显著趋势。其中,检索增强生成因其快速部署和隐私保护的特点而备受关注。然而,现有的医学检索增强生成框架仍有不足。大多数现有医学检索增强生成框架专为单轮问答任务设计,不适合多轮诊断对话。另一方面,现有的医学多轮检索增强生成框架未考虑潜在疾病间的相互联系,无法像医生一样精确询问。为解决这些问题,我们提出了一种模仿医生诊断过程的多轮诊断检索增强生成(MRD-RAG)框架。这个RAG框架能够分析潜在疾病的诊断信息,并像医生一样准确地进行多轮诊断。

2025-04-16 20:26:39 949

原创 解锁FinSphere:金融科技领域的股票分析新利器

结果发现,随着使用的Stocksis数据集比例增加,模型性能显著提升,从使用20%数据时的58.90分,提升到使用100%数据时的70.88分,而且数据量增加时性能提升幅度呈非线性增长,这表明充足的训练数据对模型发挥最佳性能至关重要,也证明了FinSphere框架具有良好的扩展性。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

2025-04-16 20:25:41 588

原创 EoMT:ViT是一种图像分割模型(CVPR2025)

论文题目1简介Vision Transformers(ViT)在各种计算机视觉任务中表现出了卓越的性能和可扩展性。为了将单尺度ViT应用于图像分割,现有的方法采用卷积适配器来生成多尺度特征,像素解码器来融合这些特征,以及Transformer解码器,该解码器使用融合的特征来进行预测。本文表明,这些特定于任务的组件引入的归纳偏差可以由ViT本身来学习,给定足够大的模型和广泛的预训练。基于这些发现,引入了仅编码器掩码Transformer(EoMT),它重新利用普通ViT架构进行图像分割。

2025-04-15 11:50:16 944

原创 Reasoning 模型 RL 对齐的实际挑战

Reasoning 模型和RL基本就是互为表里的关系,今天这篇文章主要会 curate 四个工作,以详细探究Reasoning模型对齐过程中的实际挑战并适当展望对应的策略。首先明确一下Reasoning模型的定义,我们将传统的模型建模成(prompt,answer)的马尔科夫决策过程MDP,Reasoning模型则建模成 (prompt,Thinking CoT,answer)的MDP过程。

2025-04-15 11:48:58 980

原创 智能体工作流与设计模式解析

与传统的非AI工作流相比,智能体型工作流擅长处理步骤和规则不太明确的任务,具有自主性、动态性和适应性。企业在设计智能体型工作流时,可以使用链式工作流模式、并行工作流模式、路由工作流模式、编排器-工作者模式和评估器-优化器模式、工具使用模式和多智能体协作模式等七类设计模式,提高设计的效率和系统的健壮性、可维护性和可扩展性。

2025-04-15 11:47:36 811

原创 用 OpenAI Functions 从文本构建知识图谱实战篇

当你的 RAG 应用需要同时处理结构化数据与非结构化数据时,**知识图谱(Knowledge Graphs)**是非常理想的选择。在本篇文章中,你学习了如何使用,从任意文本中提取信息并在Neo4j中构建知识图谱。OpenAI Functions 提供了结构清晰的输出形式, 因此在执行结构化信息提取任务时非常高效、便捷。

2025-04-14 20:21:52 705

原创 超全的大型语言模型(LLM)推理框架分析与选型指南

随着大型语言模型(LLM)在智能客服、内容创作、代码生成等领域的广泛应用,推理框架作为高效部署的核心组件,直接决定了应用的性能、成本和开发效率。本文将结合当前主流推理框架的特点和应用场景,为您提供一份专业的选型指南。

2025-04-14 20:20:00 723

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除