自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1638)
  • 收藏
  • 关注

原创 告别单一模型!我用多智能体打造“微舆”系统,实现舆情分析的多维度深挖!

近两周github一直霸榜的国产项目-微舆,引起了广泛的关注,11月3日start数3.4K,截止今天11月14日,start数26.6K,火箭原地起飞。前几个月我也从事了舆情分析的相关项目,遂抱着学习的态度,花费了3天时间研究并调试了其中的运行机制。

2025-11-17 14:44:18 466

原创 你的测试还在“原地打转”?ReAct+LangGraph落地,打造“发现问题-修复-验证”的无人值守闭环!

在AI智能测试和Agent开发中,**ReAct(Reasoning + Acting)范式**是核心方法。它通过**边思考边行动**的方式,实现智能体闭环动态决策。

2025-11-17 14:43:25 683

原创 从0到1架构多智能体量化系统!万字长文,从设计哲学到代码实现全搞定。

主要都是多智能体做相关的,其中有自动进化因子,也就是进行因子挖掘和进化的,也有直接生成交易指令的。还有直接基于量价数据,进行日内和高频交易的。

2025-11-17 14:42:23 415

原创 LangChain三十七期:为RAG植入“纠错基因”!CRAG,让AI从“答非所问”到“精准回应”!

纠正性检索增强生成(Corrective Retrieval-Augmented Generation,CRAG)是一种先进的自然语言处理技术,旨在提高检索的生成方法的鲁棒性和准确性。在 CRAG 中引入了一个轻量级的检索评估器来评估检索到的文档的质量,并根据评估结果触发不同的知识检索动作,以确保生成结果的准确性。

2025-11-17 14:40:59 514

原创 保姆级教程!手把手用LangChain 1.0 + LangSmith Studio搞定Text2SQL,从入门到部署!

在 LangChain 生态早期,开发者常因以下问题感到困惑:* **命名高度相似但功能迥异**:`LangChain`(开发框架)、`LangGraph`(状态图引擎)、`LangSmith`(开发平台)职责边界模糊;* **工具链割裂**:调试、测试、部署、监控分散在不同界面,缺乏统一工作流;* **Studio 定位不清**:`LangGraph Studio` 与 `LangSmith` 功能重叠,新手难以区分。

2025-11-17 14:39:08 484

原创 解密谷歌白皮书:从多Agent协作到AgentOps,手把手教你搭建企业AI“指挥中心”!

2024–2025 年间,AI 产业正在快速转向 **Agentic(以智能体为中心)** 的架构范式。ChatGPT、Grok、Gemini 等消费级应用把“AI Agents”带到大众视野,但在企业端,采用脚步更审慎:一方面,业务复杂度与存量系统众多,使集成与治理的难度远高于 C 端;另一方面,可靠性、合规性与可解释性成为上线前必须跨越的门槛。对多数中国大陆企业而言,“是否上智能体”从来不是一个炫技问题,而是一项与业务稳态、安全、成本与回报绑定的系统工程。

2025-11-17 14:38:16 605

原创 99%的AI大模型项目会失败!这份报告,告诉你如何避开那些通往“死亡”的发展路径。

当阿里巴巴宣布未来三年将投入3800亿元人民币用于云和AI硬件基础设施建设,创下中国民营企业在该领域的最大投资记录时,字节跳动的豆包大模型却在2025年3月实现日均12.7万亿次Token调用量的爆发式增长,同比增幅近100倍。这种**巨额投入与用户增长并存**的行业现状,正引发市场对AI大模型价值的深层拷问:投资能否盈利、未来出路何在、哪类企业将最终脱颖而出?

2025-11-15 07:45:00 1800

原创 别再让AI“一本正经地瞎编”了!这篇RAG搭建实战,让它的每一句话都有据可循

## 如何学习大模型 AI ?由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。但是具体到个人,只能说是:**“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。**这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各

2025-11-15 07:15:00 955

原创 Transformer架构拆解(终章):揭秘编码器与解码器的“黄金搭档”关系,一图看懂核心!

传统注意力机制通常用于编码器-解码器架构,让解码器在生成每个词时关注编码器的不同部分。而自注意力(Self-Attention)让序列中的每个元素都能够直接关注序列中的所有其他元素,包括自身。

2025-11-14 15:29:22 680

原创 告别语言壁垒!用Transformer库一招搞定多语言模型推理,让你的AI全球通!

在 Hugging Face 的 transformers 库中,多语言模型(Multilingual Models)是指那些在多种语言的文本数据上进行预训练,能够理解或生成多种语言的模型。它们使得跨语言任务(如翻译、跨语言分类、问答)成为可能,尤其是在目标语言缺乏标注数据时,可以通过迁移学习实现“零样本”或“少样本”应用。

2025-11-14 15:20:49 990

原创 (建议收藏)AI安全岗位面试终极武器!一文精通“双域护盾”,覆盖所有模型防御考点!

想象一下,你训练了一个准确率高达99%的图像识别模型,结果黑客只需要在图片上添加一些肉眼几乎看不见的噪声,就能让这个"聪明"的模型把猫认成汽车,把数字"7"认成"1"。这不是科幻电影,而是深度学习模型面临的真实威胁——对抗攻击。

2025-11-14 15:17:59 1004

原创 别再只当“调包侠”了!深度解析蚂蚁新开源Java项目,看懂它的设计哲学才是真本事

就在前几天,Java 领域又一重磅级开源项目诞生。**蚂蚁集团正式开源了基于 LLVM 的全新 JVM JIT 编译器 —— Jeandle。** 项目以“筋斗云”(Jeandle)为名,寓意深远。它希望为 JVM 插上翅膀,让 Java 应用能如孙悟空驾驭筋斗云一般,突破性能边界,瞬息万里。

2025-11-14 15:16:29 607

原创 【AI编程开发】代码库问答新王者!RepoSearch-R1框架详解:让大模型自己学会“找代码“,小白也能上手!

浙江大学与阿里通义灵码团队提出RepoSearch-R1框架,基于蒙特卡洛树搜索(MCTS)的强化学习方法,使大模型能通过自训练在代码库中高效导航并提取信息。该方法采用MCTS引导的轨迹生成、自我批判机制和多样化奖励函数,无需知识蒸馏或外部监督。基于此框架构建的RepoQA-Agent在代码库问答任务上表现优异,相比基线方法有明显提升,为代码库级AI应用提供了新思路。

2025-11-13 11:06:57 817

原创 【AI干货】大模型瘦身三件套:剪枝、蒸馏、量化,小白也能秒懂的模型优化指南!

文章针对大型语言模型"大而慢"的困境,详解了三种核心优化技术:剪枝(移除冗余权重/结构)、知识蒸馏(教师模型指导学生模型)和量化(降低数值精度)。阐述了各技术的核心流程、适用场景和选择策略,并指出可根据需求单独或组合使用这些技术,实现模型小型化与推理速度提升。

2025-11-13 11:05:41 584

原创 从150K到2K!用MCP代码执行重构企业级Agent,成本直降98%

本文分析了企业级Agent开发中的上下文管理难题,提出使用MCP执行代码的解决方案。相比传统工具调用,代码执行方式能让Agent仅导入所需工具,在执行环境中处理数据,仅返回最终结果。这种方法可节省98%的token成本,提高效率,增强隐私保护和状态持久化,特别适合需要访问多工具、复杂工作流和长时间运行任务的场景。

2025-11-13 10:59:18 384

原创 【保姆级教程】告别“Token刺客“,用Markdown优化大模型输入,小白也能玩转AI文档处理

本文探讨大模型处理非结构化文档的挑战,提出以Markdown作为中间语言。MarkItDown工具可将PDF、DOCX等复杂文档高效转换为结构化Markdown,解决理解障碍、Token浪费和信息丢失问题。这种转换能提升模型理解力、压缩上下文长度并保留关键信息,为RAG、文档摘要等AI任务提供高质量输入,是构建私有数据AI应用的必备工具。

2025-11-13 10:58:10 306

原创 【爆肝万字】AI智能体上下文工程全攻略:从提示工程到多智能体协作,小白也能秒懂的保姆级教程

上下文工程是AI智能体系统的核心技术,旨在弥补大模型感知有限、理解局限、记忆缺失和注意力涣散的缺陷。它从RAG系统1.0演进为动态上下文管理,包含检索与生成、处理和管理三大核心组件。随着技术发展,上下文工程正向多模态融合、自动化优化和多智能体协作方向演进,为构建更智能、更自主的AI系统提供支撑,是通向AGI的必由之路。

2025-11-13 10:57:32 1049

原创 爆肝实测!LoRA微调大模型,小白程序员也能玩转AI技术,成本降低99%

讲LoRA之前,必须要了解全参数微调的痛点。举个具体的例子,没有LoRA之前,某创业公司想微调70B模型做客服,一算账直接懵了:

2025-11-13 10:54:14 938

原创 CostBench横空出世!大模型智能体的“成本盲区“被彻底曝光,程序员必看!

文章介绍了CostBench基准测试,评估LLM智能体在动态环境中的成本最优规划能力。研究发现,当前顶尖模型(包括GPT-5、Gemini等)在静态和动态环境下的规划能力不足,尤其在面对环境变化时适应性严重受挫。模型失效的主要根源包括路径枚举能力匮乏、隐式干扰适应性失效等。CostBench揭示了从"能完成任务"到"能经济地完成任务"的差距,为智能体演进指明方向。

2025-11-12 15:14:32 617

原创 AI黑科技:DRAG让RAG“懂“同义词,准确率飙升10.6%!代码已开源

DRAG技术突破传统RAG局限,通过细粒度查询分解和差异化评估,解决"同义词"检索难题。DRA模块精准筛选文档,RSC模块校准高风险token,在HotpotQA上准确率提升10.6%,轻量化设计适配多种开源模型,为复杂查询场景提供新解决方案。

2025-11-12 15:13:28 796

原创 “我的AI是个健忘症?“三步打造会记住一切的智能助手:RAG→agentic RAG→agent memory

文章详解AI助手记忆能力演进三阶段:传统RAG只提供只读知识库;agentic RAG引入智能检索决策;agent memory实现完整CRUD能力,通过多Collection隔离+混合索引+动态架构,使AI能像人类一样管理不同类型记忆。技术难度降低,但对记忆管理的理解深度成为真正壁垒。

2025-11-12 15:10:42 818

原创 LangChain大模型操作数据库全攻略:从MCP到Tools再到SQL生成,一篇搞定大模型与数据库交互!

文章介绍了LangChain框架下三种大模型操作数据库的方法:1)使用MCP适配器连接数据库,通过MultiServerMCPClient管理连接;2)使用Tools工具访问数据库,通过create_sql_agent()构建SQL代理;3)直接让大模型生成SQL并执行。文章提供了详细的代码实现和示例,帮助开发者根据需求选择适合的数据库访问方式,提高开发效率和灵活性。

2025-11-12 15:09:27 458

原创 大模型开发必看:从传统RAG到智能体RAG,一文掌握AI应用性能提升10倍的秘密武器!

文章详解了RAG技术的三大演进阶段:传统RAG通过外部知识提升LLM回答准确性但效率低下;REFRAG引入数据压缩和过滤机制,大幅提升处理速度并降低成本;Agentic RAG结合智能体概念,实现复杂任务规划和多工具协作,使AI系统能解决现实世界多步骤问题。这标志着AI从简单知识检索向自主思考、规划和执行的智能助手转变。

2025-11-12 15:08:25 320

原创 【小白友好】RAG检索排序入门到实战,一篇搞定大厂面试,附项目经验写法!

文章详细介绍了RAG系统中检索排序技术的重要性,指出它决定了"检索内容的靠谱程度"。文章解释了为什么默认向量召回不够用,提出了融合排序的核心思想——结合稀疏检索(如BM25)和密集检索(如向量召回)的优势。文章还探讨了面试官常问的检索排序问题,包括如何融合、Re-ranking方法、Query理解及效果评估,并提供了专业项目经验写法,强调排序是RAG系统的"灵魂"。

2025-11-12 15:07:42 1540

原创 程序员必看!DeepEyes V2让AI从“工具狂魔“变“智能决策者“

这篇论文聚焦 “Agentic 多模态大模型” 的核心突破,提出了**能主动调用工具、动态整合推理**的 **DeepEyesV2**。DeepEyesV2 通过 “冷启动微调 + 强化学习” 两阶段训练,整合代码执行、网页搜索等工具,实现了感知、搜索、推理的跨能力协同,在真实世界理解、数学推理、搜索密集型任务中表现远超现有模型,为智能体化多模态模型的构建提供了完整方案。

2025-11-11 14:44:21 887

原创 AI Agent修炼手册:五维能力框架,让你的智能体从“工具“进化为“超级员工“

当前许多AI Agent缺乏真正的智能,仅是简单的LLM或自动化脚本。本文提出AI Agent五维能力框架:任务规划、环境感知、记忆与学习、多轮对话和API工具调用,使Agent从"工具"进化为能思考、感知、学习的"超级员工"。通过实战案例和落地建议,帮助开发者构建真正智能、有"灵魂"的AI Agent系统。

2025-11-11 14:41:33 572

原创 大模型开发实战:从Transformer架构到GPU集群,一篇搞定

大语言模型LLM的精妙之处在于很好地利用数学解决了工业场景的问题,笔者基于过往工程经验继续追本溯源,与腾讯学堂合作撰写本文,尝试让鹅厂小伙伴人人都能懂大语言模型的基础原理。

2025-11-11 14:39:08 859

原创 突破!AI不再只是“读字“!李飞飞团队新模型Cambrian-S让AI真正“看懂“世界,程序员必学!

纽约大学谢赛宁联合李飞飞和LeCun发布Cambrian-S模型,通过预测感知原型建立AI"超级感知力"。研究团队提出多模态智能发展路径,并引入VSI-S基准测试评估空间感知能力。实验表明,现有多模态模型在空间认知方面表现有限,甚至低于随机水平。研究认为,实现超级智能需超越文本理解和语义感知,发展空间认知和预测性世界模型,这为AI编程开发提供了新方向。

2025-11-11 14:35:14 729

原创 【真相】吴恩达揭秘AI开发‘残酷真相‘:小白程序员如何用‘乐高积木‘少走半年弯路

吴恩达与LangChain创始人对话揭示:AI开发需像组合乐高积木般灵活运用工具,构建Agentic系统核心在任务分解与流程编排。语音交互关键在降低延迟,MCP协议仍处早期,Agent间通信更早期。AI编程助手不会取代程序员,反而推动编程学习。创业成功关键在于速度与技术能力。

2025-11-11 14:34:05 918

原创 大模型开发新趋势:RAG技术架构与实战指南,小白也能上手

本文介绍了RAG技术在大模型中的应用,包括其架构图、技术要点和适用场景。文章探讨了RAG技术的局限性,并提出数据库与RAG融合的最佳实践方案,通过强化大模型的SQL-Call能力处理精确计算和统计问题。对比了业界常见技术方法的优缺点,展示了如何利用RAG技术解决大模型在知识库应用中的挑战,为开发者提供实用的技术选型参考。

2025-11-11 14:31:52 705

原创 RAG技术全解析:检索增强生成方法与优化,程序员必学技能,建议收藏!

RAG(检索增强生成)是一种结合知识检索和生成技术的方法,用于解决大模型无法解决的私域问题。其基本流程包括知识收集、检索和生成三个阶段。相比微调,RAG通过检索知识库生成回答,无需改变模型参数,避免了原有能力消失的风险,实现效率更高。文章还介绍了RAG的优化技巧和评估方法,为实际应用提供了指导。

2025-11-10 17:01:17 817

原创 零基础手把手教你用Python构建RAG系统:从原理到完整代码实战

本文详细介绍了检索增强生成(RAG)的工作原理,通过Python和ollama从零构建了一个简单的RAG系统。文章涵盖了索引、检索和生成三大核心环节,提供了完整代码实现,并讨论了多种RAG变体及其改进方向。这一技术能有效解决大模型无法访问最新信息的问题,显著提升AI回答的准确性和实用性。

2025-11-10 17:00:23 882

原创 【收藏必备】10分钟手搓专属Agent!讯飞星辰RPA让AI从“头脑风暴“走向“生产工具

文章介绍了科大讯飞星辰智能体平台通过Agent+RPA技术,使AI从思考阶段走向实际执行。其模块化架构采用核心智能体决策、功能智能体执行的模式,彻底打通了AI与现实世界的连接。普通用户无需编程基础,10分钟即可创建专属Agent,实现自动化任务。讯飞开源Astron项目,开放企业级架构,让AI能力私有化和自动化,真正进入Agent时代。

2025-11-10 16:56:32 968

原创 大模型应用实战:意图识别系统设计与面试指南,AI产品经理必学

本文详细介绍了AI产品经理面试中意图识别问题的回答框架,包括场景定义与意图体系设计、技术方案选型(规则/ML/LLM混合策略)、用户体验保障机制(置信度阈值、上下文继承)以及数据闭环迭代流程。文章强调根据场景特点权衡技术方案,结合LLM处理复杂意图,并建立完善的评估指标与持续优化机制,以提升任务完成率和用户满意度。

2025-11-10 16:50:17 772

原创 程序员必学的RAG知识库系统搭建全流程详解

作者详细分享了搭建完整RAG知识库系统的实践经验,重点介绍了知识库构建流程(文件解析、文本提取、清洗、分块、向量化等)和智能检索流程(查询处理、扩展、向量化、相似度检索等)。强调了文本分块策略和嵌入模型选择的重要性,展示了系统界面和功能,包括知识库配置、检索效果和模型对比等,旨在打造个人统一的学习资料检索入口。

2025-11-10 16:48:58 1017

原创 收藏这份指南!AI Agent不会裁员90%,而是重塑你的工作方式

AI Agent发展经历L1至L5五个阶段,当前正从L2向L3演进。其核心组件包括感知、规划、记忆、工具使用和行动,企业应用分为流程自动化型和超级Agent型。虽存在错误复合效应、成本增长和工具生态不足等问题,但本质是提升效率而非简单替代员工。通过实际案例可见,AI Agent自动化重复任务,解放人力聚焦高价值工作,是企业与员工共同进化的加速器。

2025-11-10 16:46:32 765

原创 必收藏!RAG系统性能不升反降?RAGSmith揭秘:整体优化才是王道

RAGSmith研究颠覆传统RAG模块化优化方法,提出端到端架构搜索新范式。通过遗传算法在46,080种配置中自动发现最优组合,在六个专业领域平均提升3.8%准确率。研究揭示RAG性能取决于组件间协同效应而非单模块表现,识别出跨领域"鲁棒backbone",并强调领域自适应的重要性。该研究为RAG开发提供自动化优化路径,代表AI系统工程化从手工调优到自动化搜索的重要趋势。

2025-11-10 16:44:43 826

原创 程序员必学:大模型问答系统的向量数据库应用指南(超详细教程,建议收藏)

文章介绍了大模型问答系统的完整工作流程,分为用户提问前和提问后两个阶段。提问前阶段包括文档切片、为每个切片生成向量并将其存入向量数据库;提问后阶段则通过召回相关内容、重排结果质量,最终生成回答给用户。这种基于向量数据库的架构是大模型实现高效知识检索和回答生成的关键技术。

2025-11-10 16:43:01 960

原创 LoRA:大模型轻量化微调技术,从入门到精通

LoRA(Low-Rank Adaptation)是一种大模型参数高效微调方法,通过将权重变化分解为低秩矩阵(W = W₀ + BA),仅训练少量参数(通常不到1%),即可实现与全参数微调相当的性能。这种方法显著降低了计算和存储成本,使大模型能在资源有限情况下部署多任务版本,已成为AI工程主流轻量化适配技术。

2025-11-10 16:42:07 605

原创 Agent开发从入门到精通,两周就够了!收藏这篇保姆级教程就够了!

我是在10月份第一次真正看到“Agent”的潜力。 当时就一个念头——这玩意儿,未来肯定有戏。

2025-11-09 10:45:00 682

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除