个人向AI Coding全栈开发实践

  • **把AI当作一个听你指挥和调派的助手,**怎么跟人沟通,就怎么跟AI沟通。
  • 有条理、无歧义地描述问题的能力越强,用起AI来就越得心应手。如果AI听不懂你的描述,那80%的人也听不懂。
  • 拆分子任务、清晰描述流程这些在给人分配任务时行之有效的策略,同样适用于AI。
  • AI Coding相比Manual Coding已经是自动挡和手动挡的区别了,自动挡能比80%的手动挡司机开得好,就如同JVM的内存管理比80%的C++程序管理的好。
  • AI不擅长改bug,因为人也不擅长。如果你比AI擅长改bug,是因为你有AI不具备的特定领域的经验和直觉。
  • **你没有能力指挥AI写超出你认知边界的代码。**懂产品的人比不懂产品的人能用AI做出更好的产品,懂后端的人比不懂后端的人能用AI写出更好的后端代码,懂前端的人比不懂前端的人能用AI写出更好的前端代码。

  • 首推Claude3.7,只要提示词得当,在正确的监督下,现在的能力完全可以替代纯编码的中级工程师,且编码效率是人的10到100倍。
  • 现阶段AI能力还无法独立完成复杂度高的系统设计和开发,如果你强行让AI承担复杂度高的「一句话需求」,很容易陷入无止境无结果的循环调试中。
  • AI现阶段能够独立完成的(可以无编译错误一次通过)项目复杂度大约相当于初级工程师1~2天能完成的简单项目。
  • 如果需要AI协助你从0到1复杂度高的项目,你仍然要自己想清楚系统架构、模块间的关联和接口协议,把单独的功能模块的交由AI实现,并针对特殊业务场景进行手动的微调。
  • 如果AI底层能力越来越强,能够完成的项目复杂度就越来越高,我们需要关注业界的最新动态,及时将新技术转化为生产力。
  • AI可以补足你描述中遗漏的点并自由发挥,但以现阶段的AI能力,不要让AI自由发挥的部分超过30%,否则会失去掌控。
  • 开发过程仍然建议遵循万丈高楼平地起的模式,先定义库表结构,再描述模块功能,定义接口,调试通过后生成接口文档,搭建前端页面,观察效果并调优,只不过现在这一切都可以让AI在你的指挥和监督下进行。
  • DDL、JSON、markdown、.java、.ts等信息都可以作为上下文在前后端中传递,跨语言的实体定义翻译不再需要依赖手工搬运或第三方框架。
  • 如果让AI改动你已有代码,**你需要具备对AI的代码进行CR的能力,**在CR过程中也经常会有「啊哈原来还可以这样写」的顿悟时刻。
  • 糟糕的实现也可以考虑使用AI重构,但重构前要一定要想好回归用例。
  • 过长的文件可以使用AI重构,除了能够让文件组织更结构化、更易于维护外,更大的优点是利于精准划定改动范围从而精简上下文。
  • 当精简上下文后,AI的速度和准确率会大幅提升,所以单文件场景修改优先用Chat模式,涉及多文件修改再使用Agent。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值