Python资源共享群:484031800
Pandas模块数据统计与分析常用方法
- df.describe():按各列返回基本统计量和分位数
- df.count():计算非NA值的数量,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df.max():计算最大值,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df.min():计算最小值,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df.sum():计算和,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df.mean():计算平均值,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df.median():计算中位数,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df.var():计算方差,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df.std():计算标准差,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df.mad():根据平均值计算平均绝对偏差,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df.cumsum():计算累计求和,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df.cov():计算协方差矩阵,axis=0 按列计算,axis=1 按行计算,默认axis=0。
- df1.corrwith(df2):计算相关系数
- df1['col1'].groupby(df1['col2']):列1 按照列2 分组,即列2为Key。
- grouped.agg({ 'col1':'fun1' , 'col2':'fun2' }):通过分组系列,还可以传递函数的列表或字典来进行聚合。对不同的列应用不同的函数的聚合,函数可以是多个。
示例数据集说明
接下来,我们将以如下数据集,分享各函数的使用方法。
df.describe()
按各列返回基本统计量和分位数。
df.count()
计算非NA值的数量,axis=0 按列计算,axis=1 按行计算,默认axis=0。
df.max()
计算最大值,axis=0 按列计算,axis=1 按行计算,默认axis=0。
df.min()
计算最小值,axis=0 按列计算,axis=1 按行计算,默认axis=0。
df.sum()
计算和,axis=0 按列计算,axis=1 按行计算,默认axis=0。
df.mean()
计算平均值,axis=0 按列计算,axis=1 按行计算,默认axis=0。
df.median()
计算中位数,axis=0 按列计算,axis=1 按行计算,默认axis=0。
df.var()
计算方差,axis=0 按列计算,axis=1 按行计算,默认axis=0。
df.std()
计算标准差,axis=0 按列计算,axis=1 按行计算,默认axis=0。
df.mad()
根据平均值计算平均绝对偏差,axis=0 按列计算,axis=1 按行计算,默认axis=0。
以下是付费内容
df.cumsum()
计算累计求和,axis=0 按列计算,axis=1 按行计算,默认axis=0。
df.cov()
计算协方差矩阵,axis=0 按列计算,axis=1 按行计算,默认axis=0。
df1.corrwith(df2)
计算相关系数。
df1['col1'].groupby(df1['col2'])
列1 按照列2 分组,即列2为Key。
df.groupby('col1')
DataFrame按照列1分组。
grouped.agg(['fun1','fun2'])
根据多个函数聚合,表现成多列,函数名为列名。
grouped.agg({ 'col1':'fun1' , 'col2':'fun2' })
通过分组系列,还可以传递函数的列表或字典来进行聚合。对不同的列应用不同的函数的聚合,函数可以是多个。