- 博客(16)
- 收藏
- 关注
原创 超详细yolo8/11-pose人体姿态全流程概述:配置环境、数据标注、训练、验证/预测、onnx部署(c++/python)详解
主要涉及五个文件,main.cpp yolov8_utils.h yolov8_pose_onnx.h yolov8_utils.cpp yolov8_pose_onnx.cpp,其中yolov8_utils.h和yolov8_utils.cpp和yolo8/11-detect目标检测一样,这里就不贴码了;和检测相似,其中不管姿态、旋转、分割、检测啥的,都有yolov8_utils.h和yolov8_utils.cpp这两个文件,和目标检测里面的一样,可以参考上面的大佬的,或者下面这篇文章。
2025-08-16 17:36:43
2958
原创 超详细yolov8/11-obb旋转框全流程概述:配置环境、数据标注、训练、验证/预测、onnx部署(c++/python)详解
因为yolo的检测/分割/姿态/旋转/分类模型的环境配置、训练、推理预测等命令非常类似,这里不再详细叙述环境配置,主要参考,下面有相关链接,这里主要针对旋转框的等不同细节部分详细说明;【YOLOv8/11-detect目标检测全流程教程】【环境配置】【yolo全家桶github官网】【yolo说明文档】
2025-08-16 17:35:09
1732
4
原创 超详细yolov8/11-segment实例分割全流程概述:配置环境、数据标注、训练、验证/预测、onnx部署(c++/python)详解
因为yolo的检测/分割/姿态/旋转/分类模型的环境配置、训练、推理预测等命令非常类似,这里不再详细叙述,主要参考**【YOLOv8/11-detect目标检测全流程教程】**,下面有相关链接,这里主要针对数据标注、格式转换、模型部署等不同细节部分;【YOLOv8/11-detect目标检测全流程教程】【环境配置】【yolo全家桶github官网】【yolo说明文档】
2025-07-05 15:38:43
2895
原创 超详细yolo8/11-detect目标检测全流程概述:配置环境、数据标注、训练、验证/预测、onnx部署(c++/python)详解
dataset.yaml文件内容为:若路径里面没有中文字符,就是配置路径,否则修改为自己刚刚生成数据集路径,names是类别,分别是类别的个数和名称,类别个数一定要和自己标注的类别数一样,类别名称随便起一个就行,不是特别重要。的模型,格式onnx,加载这个模型,可以实现一次性标注;标注完成后,标注文件是json格式,需要转换成yolo格式的txt文件,执行如下命令,会自动生成yolo格式的数据集,名字为。,目前最新的出了1.22版本,我用的是1.17,看自己的配置需求,必须与上述导出的模型一致;
2025-07-05 14:13:43
1873
原创 超详细yolov8/11图像菜品分类全程概述:环境、数据准备、训练、验证/预测、onnx部署(c++/python)详解
我的都是在Linux系统下,训练部署的;模型训练之前,需要配置好环境,Anaconda、显卡驱动、cuda、cudnn、pytorch等;参考:Ubuntu/Debian小白从零开始配置深度学习环境和各种软件库(显卡驱动、CUDA、CUDNN、Pytorch、OpenCv、PCL、Cmake …)【持续维护】使用清华镜像,下载。二、数据准备分类模型准备比较简单,不需要数据转换成txt啥的;分类与检测不同,在数据集准备过程中无需标签labels文件,也无需配置.yaml文件。都是图片,不同类型的图片
2025-06-22 13:21:52
1236
原创 graspness复现问题总结及应用自己的数据集
GitHub代码地址:https://github.com/rhett-chen/graspness_implementation?tab=readme-ov-file官方数据测试集:https://graspnet.net/datasets.html我的是Linux下,参考这篇博客,非常详细,Ubuntu/Debian小白从零开始配置深度学习环境和各种软件库(显卡驱动、CUDA、CUDNN、Pytorch、OpenCv、PCL、Cmake …)【持续维护】安装pytorch时,记得独立创建环境,避免库
2025-06-16 18:41:54
1270
14
原创 基于pcl的传统点云配准集合C++版 ICP/ NDT/SAC-IA/RANSAC/FPCS/K4PCS/Point2Plane-ICP/GICP/LM-ICP/PCA...【持续更新】
各个方法本身没有好坏对比,根据点云数量、几何形状、质量等,选择合适的方法,可能不同的点云,适用于不同的方法;还有各个方法的参数设置很关键,否则影响时间和精度;这些方法网上资源很多,没什么新奇的地方,主要是为了自己便利使用和经验总结;
2025-06-16 13:28:49
1046
原创 Ubuntu&Debian开机黑屏一直有光标在闪-问题分析总结解决
上是因为我在root权限里面,并在root文件下,卸载自带的python3,并执行了autoreove这个命令,执行完后直接重启,开机黑屏,有个小横杠光标一直闪;我是遇到两次这个问题,一次是在Ubuntu20.04上,一次是在Debian12上,第一次遇到时候那叫一个紧张,感觉系统里面重要的东西不保,吓死我了;或f2或f3,进入tty模式,输入用户名和密码,会到终端,如果终端可以使用,可以放心下来,问题不大,可以修复;(与gpu不匹配,与cpu图形冲突)、内核参数错误(升级内核/内核版本低) 或。
2025-05-02 17:20:08
1446
原创 Jetson Xavier NX 系统烧录与组件安装&配置pytorch
Step3:安装到50%的时候会出现弹窗,设置安装用户名字密码等,并选择安装位置,一定要选择 NVMe,如果选择 SD card 最后会报错,显示系统内存不够,因为往往 SD card的大小只有8G/16G;选择继续,选择 USB 连接,IP 地址固定为 192.168.55.1,用户名和密码根据自己设置的填写,点击 Install,若出现下面错误,这里面有相关安装教程,下面会讲到;Step1:sdkmanager加载完成后,出现下面界面,选择Jetson,硬件,JetPack5.1.4,不要选择。
2025-05-02 16:05:09
1455
原创 Ubuntu20.04安装pcl1.10.0 && pcl1.13.1 一文详细介绍安装步骤(带图)及报错解决
既然是qt_version_tag的问题,说明是qmake的版本不兼容导致,即当前QT使用的qmake和系统实际指定的qmake版本不一致。我们看到两个库不一样,一个是7.1.0,一个是8.1.2 ,因此把anaconda下的libffi.so.7指向系统的7.1.0。pcl_demo.cpp程序,在vscode里面,#include <pcl/xxx.h>有波浪线警告 是正常现象,无需紧张。安装成功完后,会在usr/local/include/文件中,出现pcl-1.13文件,包含头文件。
2025-03-07 17:55:40
5755
原创 Ubuntu20.04安装opencv4.2.0 && opencv4.10.0 一文详细介绍安装步骤(带图)及报错解决
cmake时候打开了 OPENCV_GENERATE_PKGCONFIG,在系统/usr/local/lib/pkgconfig下自动生成了opencv4.pc文件,里面记录了OpenCV头文件、库文件的路径。使用apt安装方式,比较简单,但是版本不是最新的,一般Ubuntu20.04对应Opencv4.2.0,Ubuntu22.04对应Opencv4.6.0。查看下anaconda3/lib/和 /usr/lib/x86_64-linux-gnu/ 对应得库版本是否一致 ,如果不一样则修改。
2025-03-05 13:56:41
4885
原创 Ubuntu/Debian小白从零开始配置深度学习环境和各种软件库(显卡驱动、CUDA、CUDNN、Pytorch、OpenCv、PCL、Cmake ...)【持续维护】
Linux下使用sudo命令时出现 debian中 xxx is not in the sudoers file.This incident will be reported.表明你的用户没有使用sudo的权限;直接 编辑 Sudoers 文件以 添加用户。切换到root权限里面编辑sudoers文件滚动到最后一行 ,添加 用户名 ALL=(ALL:ALL) ALL按下Ctrl+O保存文件,并按Enter键确定保存,按Ctrl+X退出,reboot重启后,就可以sudo命令了。为什么换源,软件源是
2025-03-05 13:49:11
1666
原创 CMakeLists_模板,通用模板,适合小白
构建工程时,需要配置环境,使用cmake方便许多,关键是会写CMakeLists.txt,这里总结了一篇通用模板,适用于大部分场景,但对于存在有子文件CMakeLists.txt来说,还没实现;有不当之处,欢迎大家指出;这是我的工程目录,Windows下,cmd打开终端,执行tree、tree /f 、tree/a查看目录结构;CMakeLists.txt模板 注意区分名称大小写和后面加不加小写s;
2024-10-25 14:29:45
786
原创 T-Rex 自动化标注工具 检测一切
点击左上角 里面有AL字样的小方框,标签命名,创建;标注后,可以设置置信度的值,调节框的个数;给大家安利一个自动化标注工具,特别适用于密集标注的场景,废话不多说,先上链接;2.检测快,准确率高,可以设置阈值,对于自动标注出来的框,也可以二次手动修改;使用Github账号登陆,点击快速开始,Ctrl+A全选,导入图片。3.导出为coco和yolo格式,不用再进行数据转换,直接训练;1.操作简单,无需下载,网页打开,可以检测一切物品;2.高于500万像素,推理速度慢,可能卡死;,不支持分割、姿态、旋转框;
2024-10-24 18:21:02
1063
原创 YoLoV8/11自定义关键点检测格式转换Labelme转Txt
YoLoV8自定义关键点检测标注格式转换,labelme2yolo,直接转为yolo格式的txt文件
2024-10-24 10:40:36
1230
sam分割大模型 onnx模型 sam-vit-b-01ec64.encoder.quant.onnx 与sam-vit-b-01ec64.decoder.quant.onnx
2025-07-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅