关于大数据精准营销中搜狗用户画像挖掘比赛的一些感悟(看第一名代码有感)

本文介绍如何使用NLTK、jieba进行分词及词形还原,利用doc2vec获取特征;通过tf_idf、NBLRNN结合stack融合创造新特征;最终采用xgboost或LGB进行分类,构建NLP任务基线模型。
摘要由CSDN通过智能技术生成

1.用NLTK、jieba等对query做一些分词,词形还原,再用doc2vec 得到dbow ,dm的一些特征

2.用tf_idf NB LR NN 等一些方法 再结合stack 融合得到一些新的特征

3. 最后用xgboost 或者LGB 做一些分类。

以上大概可以得到一个baseline,具体怎么做特征工程 怎么调参 还是一个技术活

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值