【VLM小白指北 (1) 】An Introduction to Vision-Language Modeling

开一个新坑Vision-Language Modeling (VLM) ,原文76页,慢慢更,for beginners,但也不能之前啥都不会啊。

原文链接:An Introduction to Vision-Language Modeling


Introduction

  • 存在的问题:将语言与视觉相结合的问题并未完全解决。例如,大多数模型在理解空间关系或计数时仍存在困难,这需要依赖额外数据标注的复杂工程开销。许多VLM也缺乏对属性和顺序的理解。它们常常忽略输入提示的一部分,导致需要大量的提示工程努力才能产生期望的结果。有些模型还可能产生既不必要也不相关的幻觉内容。因此,开发可靠的模型仍然是研究领域的热点。

The Families of VLMs

VLM家族作者分为四类,如下:
在这里插入图片描述

  1. Contrastive:使用正负对。训练为:正例对的相似表示,负例对表示相离。
  2. Masking:通过给定未遮蔽文本标题,重建缺失图像块。同样地,通过在标题中遮蔽单词,可以训练VLM在给定未遮蔽图像的情况下重建这些单词。
  3. Generative:图生文,文生图。通常是最昂贵的训练方式。
  4. Pretrained backbones:基于Pretrained backbones的VLM通常利用开源的LLMs,如Llama,来学习图像编码器(也可能预训练)与LLM之间的映射map。

这些范式并不是相互排斥的;许多方法依赖于对比、遮蔽和生成标准的混合。


基于Transformer的VLMs早期工作

最早是LLM中的BERT表现出很好的性能,基于此,出现了结合image的visual-BERT和ViLBERT。这些模型基于两个目标进行训练:1)一个经典的mask重建任务,旨在预测给定输入中的缺失部分;2)一个句子到图像的预测任务,旨在预测一个标题是否实际描述了图像内容。


基于对比的VLMs

这里首先要对“对比学习”有一定了解。我的理解是,与NCE不同的是,InfoNCE损失不是预测二进制值,而是利用在模型表示空间中计算的距离度量,比如余弦相似度。这需要计算正对样本和所有负对样本之间的距离。该模型通过softmax学习预测在表示空间中最接近的最有可能的一对示例,同时将较低的概率与所有其他对负示例关联起来。InfoNCE损失函数:
在这里插入图片描述


InfoNCE引出了一个重要工作:CLIP

一种常用的对比方法,使用InfoNCE损失的是对比语言-图像预训练(CLIP)。正例对定义为一张image及其对应的真实标题,而负例定义为相同的image,但与之配对的是包含在mini-batch中的描述其他图像的所有其他标题。CLIP的一个新颖之处在于训练一个模型,以在共享的表示空间中融合视觉和语言。CLIP训练随机初始化的视觉和文本encoder,以使用对比损失将图像及其标题的表示映射到相似的embedding。原始的CLIP模型在网络上收集的4亿个text-image对上进行训练,展示了显著的零样本分类迁移能力。具体来说,一个ResNet-101 CLIP模型与监督式ResNet 模型(达到76.2%的零样本分类准确率)的性能相匹配,并在几个鲁棒性基准测试中超过了它。

另外两个工作:

SigLIP:与 CLIP 类似,不同之处在于它使用基于二元交叉熵的原始NCE损失,而不是使用 CLIP 基于InfoNCE的多类目标。这种改变使得 SigLIP 在小于 CLIP 的批量大小上能够实现更好的零样本性能。
Llip:潜在语言图像预训练(Llip)考虑到一张图像可以用多种不同的方式来描述。它提出通过一个交叉注意力模块,根据目标标题来条件化图像的编码。考虑标题的多样性增加了表示的表达性,并且通常提高了下游零样本迁移分类和检索性能。


具有mask的VLMs


更不动了明天再更

VLMVision Language Model)和ViT(Vision Transformer)是两种不同的深度学习模型架构,它们在处理视觉任务和融合视觉与语言信息方面各自有着独特的应用和优势。 ViT(Vision Transformer)是将自然语言处理领域中广泛使用的Transformer模型应用到计算机视觉领域。Transformer架构最初是为处理序列数据设计的,如文本,通过自注意力机制有效地捕捉序列内各个元素之间的关联。ViT将图像分割成一系列固定大小的补丁(patches),然后将这些补丁转换成序列数据,应用Transformer架构进行处理。ViT在图像分类、目标检测等任务上取得了与甚至超越传统卷积神经网络(CNN)的性能。 VLMVision Language Model)则是指那些能够处理视觉和语言双模态数据的模型。这类模型通常可以接收图像和文本作为输入,并对这两类数据进行联合处理。VLM的目的是让模型能够理解和生成图像与语言之间的关联,例如,给定一个图像,VLM能够生成描述该图像的自然语言句子,或者根据输入的描述语句,选择或生成相关的图像。VLM的这种能力使得它在图像字幕生成、视觉问答(VQA)、跨模态检索等领域非常有用。 VLM和ViT的关系在于,ViT可以作为VLM中处理视觉信息的组成部分,VLM往往整合了ViT来处理图像输入,同时可能还包括处理语言信息的其他组件,如NLP中的Transformer模型。在某些高级的VLM中,ViT可以帮助模型更好地理解图像内容,从而使其在联合处理视觉和语言信息时更加高效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Willow_CS_DN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值