欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与目标
矿石识别在矿业工程、地质勘探等领域具有重要的应用价值。传统的矿石识别方法主要依赖于专家的经验和实地观察,不仅效率低下,而且易受人为因素影响。随着深度学习技术的快速发展,尤其是卷积神经网络(CNN)在图像识别领域的卓越表现,为矿石识别提供了新的解决方案。因此,本项目旨在利用PyTorch深度学习框架,构建基于卷积神经网络的矿石识别系统。
该系统的主要目标是自动接收矿石图像作为输入,通过深度学习模型对图像进行特征提取和分类,最终输出矿石的类别信息。通过该系统,可以实现对大量矿石图像的高效、准确分类,为矿业工程、地质勘探等领域提供有力支持。
二、技术栈
Python:作为项目的编程语言,Python具有简洁、易读和强大的库支持。
PyTorch:PyTorch是一个开源的深度学习框架,提供了灵活的神经网络构建工具和高效的计算性能,适用于各种深度学习应用。
图像处理库:如OpenCV等,用于矿石图像的读取、预处理和增强。
数据标注工具:如LabelImg等,用于对矿石图像进行标注,生成训练所需的标签数据。
三、系统流程
数据收集与标注:收集包含各种矿石类别的图像数据集,并使用数据标注工具对图像进行标注,生成训练所需的标签数据。
数据预处理:对收集到的图像数据进行预处理,包括图像尺寸调整、归一化等操作,以