欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与意义
随着交通运输业的快速发展,道路安全问题日益受到人们的关注。疲劳驾驶作为一种常见的交通违规行为,不仅会导致驾驶员反应速度和判断能力下降,增加事故风险,还会对驾驶员的身体健康造成不良影响。因此,开发一套能够实时监测驾驶员疲劳状态并检测交通违规行为的系统具有重要的现实意义。基于YOLOv3的疲劳驾驶及违规行为检测系统正是针对这一需求而设计的。
二、技术实现
YOLOv3算法:
YOLOv3(You Only Look Once version 3)是一种先进的目标检测算法,具有高效性和实时性的特点。它采用Darknet-53作为网络结构,通过多尺度特征融合的方式,能够在不同尺度的特征图上检测不同大小的目标。这使得YOLOv3在检测小目标时具有更高的准确率。
在本系统中,YOLOv3算法被用于实现车辆检测和驾驶员疲劳状态检测。通过对道路监控视频进行实时分析,系统能够准确识别出车辆的位置和驾驶员的疲劳状态。
疲劳驾驶检测:
系统通过实时检测驾驶员的面部特征来判断其疲劳状态。具体来说,系统首先利用YOLOv3算法进行人脸检测,并提取出面部特征点(如眼睛、嘴巴等)。然后,系统通过计算这些特征点的变化率(如眼睛闭合时间占比、嘴巴张合频率等)来判断驾驶员是否处于疲劳状态。
为了提高检测的准确性,系统还采用了机器学习算法(如支持向量机SVM)对驾驶员的疲劳特征进行分类。通过对大量带有标签的数据进行训练