欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景
随着教育技术的不断发展,自动化批改答题卡的需求日益增加。传统的答题卡批改方式需要大量的人工参与,效率低下且容易出错。因此,利用深度学习技术实现答题卡的自动批改成为了一个热门的研究方向。本项目旨在利用TensorFlow框架,结合目标检测技术,实现答题卡的自动识别和批改。
二、项目目标
本项目的目标是开发一个基于TensorFlow的答题卡目标检测系统,该系统能够自动识别答题卡中的题目区域和选项区域,并对选项进行准确的识别和批改。具体目标包括:
建立一个高效的深度学习模型,用于识别答题卡中的题目和选项;
实现答题卡图像的预处理和增强,提高模型的识别准确率;
设计并实现一个用户界面,方便用户上传答题卡图像并查看批改结果。
三、技术路线
本项目采用以下技术路线实现答题卡目标检测系统:
数据集准备:收集大量的答题卡图像作为训练数据集,并对数据集进行标注,包括题目区域和选项区域的标注;
模型选择:选择合适的深度学习模型作为目标检测的基础模型,如Faster R-CNN、YOLO等;
模型训练:使用TensorFlow框架训练深度学习模型,通过调整模型的超参数和优化算法来提高模型的识别准确率;
模型评估:使用测试数据集对训练好的模型进行评估,计算模型的准确率、召回率等指标;
模型部署