欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景
手写数字识别是计算机视觉领域的一个经典问题,也是深度学习技术的一个常见应用场景。MNIST手写数字数据集包含了大量的手写数字图片,这些图片都是经过标注的0-9的手写数字。本项目旨在利用PyTorch深度学习框架,构建卷积神经网络(Convolutional Neural Network, CNN)模型,实现对MNIST手写数字数据集的识别。
二、项目目标
模型构建:利用PyTorch框架,设计并构建适用于手写数字识别的卷积神经网络模型。
模型训练:使用MNIST数据集对模型进行训练,通过调整网络结构、优化算法和参数设置,提高模型的识别准确率。
模型评估:在测试集上评估模型的性能,包括准确率、精确率、召回率和F1分数等指标。
结果可视化:将模型识别结果以图像或表格的形式进行可视化展示,便于直观了解模型的效果。
三、项目实现
数据准备:下载并加载MNIST数据集,将其划分为训练集、验证集和测试集。对图像数据进行预处理,如归一化、数据增强等。
模型设计:构建卷积神经网络模型,包括卷积层、池化层、全连接层和激活函数等。根据任务需求,选择合适的网络结构和参数设置。
模型训练:使用训练集对模型进行训练,通过反向传播算法和梯度下降优化器更新网络参数。在训练过程中,使用验证集进行模型验证,根据验证结果调整超参数和训练策略。
模型评估:在测试