分享聚宽量化交易执行选股策略的执行过程

本文分享了使用聚宽平台进行量化交易执行的选股策略。首先通过run_query()和get_fundamentals()函数处理上市及财务数据,筛选出估值在5至100倍PE之间且市值大于10亿的股票。接着,去除市值最大10%和最小10%的股票,以优化策略。这种处理方式可避免超限问题,同时确保股票的流动性和适中市值。对于复杂的代码流程,某些股票量化交易接口提供了更便捷的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享聚宽量化交易执行选股策略的执行过程:

首先就是需要用不同的函数处理不同的数据,比如上市数据,要用run_query()函数处理,财务与估值数据要用get_fundamentals()函数处理。以及即使用同一个函数处理,参数也会相互影响。

其中securities为股票(单只或者列表),factors(单个或者列表),开始结束日期,count为截止日期前的数据数量,与start_date二选一

比如想选今天的估值数据,要用get_fundamentals(query, date=datetime.today())获取。

另外返回的数据量也有限制,如果要获取所有数据可能需要offset。

以下是代码示例:

security = list(get_all_securities(types=['stock'], date=None).index)
 
# 过滤去年亏损的股票以及估值过高超过100倍PE的股票
q = query(
    valuation.code,
    valuation.day,
    valuation.pe_ratio,
    valuation.ps_ratio,
    valuation.pb_ratio,
    valuation.market_cap
).filter(
    valuation.code.in_(security),
    valuation.pe_ratio > 5,
    valuation.pe_ratio < 100,
    valuation.market_cap >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值